1755.890—RUS specification for filled telephone cables with expanded insulation.

(a) Scope. (1) This section covers the requirements for filled telephone cables intended for direct burial installation either by trenching or by direct plowing, for underground application by placement in a duct, or for aerial installation by attachment to a support strand.
(i) The conductors are solid copper, individually insulated with an extruded cellular insulating compound which may be either totally expanded or expanded with a solid skin coating.
(ii) The insulated conductors are twisted into pairs which are then stranded or oscillated to form a cylindrical core.
(iii) For high frequency applications, the cable core may be separated into compartments with screening shields.
(iv) A moisture resistant filling compound is applied to the stranded conductors completely covering the insulated conductors and filling the interstices between pairs and units.
(v) The cable structure is completed by the application of suitable core wrapping material, a flooding compound, a shield or a shield/armor, and an overall plastic jacket.
(2) The number of pairs and gauge size of conductors which are used within the RUS program are provided in the following table:
AWG 19 22 24 26
Pairs 6 6 6
12 12 12
18 18 18
25 25 25 25
50 50 50
75 75 75
100 100 100
150 150 150
200 200 200
300 300 300
400 400 400
600 600 600
900 900 900
1000 1000 1000
1200 1200
1500 1500
1800 1800
2100
2400
2700
Note: Cables larger in pair sizes than those shown in this table must meet all requirements of this section.
(3) Screened cable, when specified, must meet all requirements of this section. The pair sizes of screened cables used within the RUS program are referenced in paragraph (e)(2)(i) of this section.
(4) All cables sold to RUS borrowers for projects involving RUS loan funds under this section must be accepted by RUS Technical Standards Committee “A” (Telephone). For cables manufactured to the specification of this section, all design changes to an accepted design must be submitted for acceptance. RUS will be the sole authority on what constitutes a design change.
(5) Materials, manufacturing techniques, or cable designs not specifically addressed by this section may be allowed if accepted by RUS. Justification for acceptance of modified materials, manufacturing techniques, or cable designs must be provided to substantiate product utility and long-term stability and endurance.
(6) The American National Standard Institute/Insulated Cable Engineers Association, Inc. (ANSI/ICEA) S-84-608-1988, Standard For Telecommunications Cable, Filled, Polyolefin Insulated, Copper Conductor Technical Requirements referenced throughout this section is incorporated by reference by RUS. This incorporation by reference was approved by the Director of the Federal Register in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies of ANSI/ICEA S-84-608-1988 are available for inspection during normal business hours at RUS, room 2845, U.S. Department of Agriculture, Washington, DC 20250, or at the National Archives and Records Administration (NARA). For information on the availability of this material at NARA, call 202-741-6030, or go to: http://www.archives.gov/federal_register/code_of_federal_regulations/ibr_locations.html. Copies are available from ICEA, P. O. Box 440, South Yarmouth, MA 02664, telephone number (508) 394-4424.
(7) American Society for Testing and Materials specifications (ASTM) A 505-87, Standard Specification for Steel, Sheet and Strip, Alloy, Hot-Rolled and Cold-Rolled, General Requirements For; ASTM B 193-87, Standard Test Method for Resistivity of Electrical Conductor Materials; ASTM B 224-80, Standard Classification of Coppers; ASTM B 694-86, Standard Specification for Copper, Copper Alloy, and Copper-Clad Stainless Steel Sheet and Strip for Electrical Cable Shielding; ASTM D 4565-90a, Standard Test Methods for Physical and Environmental Performance Properties of Insulations and Jackets for Telecommunications Wire and Cable; and ASTM D 4566-90, Standard Test Methods for Electrical Performance Properties of Insulations and Jackets for Telecommunications Wire and Cable referenced in this section are incorporated by reference by RUS. These incorporations by references were approved by the Director of the Federal Register in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies of the ASTM standards are available for inspection during normal business hours at RUS, room 2845, U.S. Department of Agriculture, Washington, DC 20250, or at the National Archives and Records Administration (NARA). For information on the availability of this material at NARA, call 202-741-6030, or go to: http://www.archives.gov/federal_register/code_of_federal_regulations/ibr_locations.html. Copies area available from ASTM, 1916 Race Street, Philadelphia, PA 19103-1187, telephone number (215) 299-5585.
(b) Conductors and conductor insulation. (1) The gauge sizes of the copper conductors covered by this section must be 19, 22, 24, and 26 American Wire Gauge (AWG).
(2) Each conductor must comply with the requirements specified in ANSI/ICEA S-84-608-1988, paragraph 2.1.
(3) Factory joints made in conductors during the manufacturing process must comply with the requirements specified in ANSI/ICEA S-84-608-1988, paragraph 2.2.
(4) The raw materials used for conductor insulation must comply with the requirements specified in ANSI/ICEA S-84-608-1988, paragraphs 3.1 through 3.1.3.
(5) The finished conductor insulation must comply with the requirements specified in ANSI/ICEA S-84-608-1988, paragraphs 3.2.2, 3.2.3, and 3.3.
(6) Insulated conductor must not have an overall diameter greater than 2 millimeters (mm) (0.081 inch (in.)).
(7) A permissible overall performance level of faults in conductor insulation must average not greater than one fault per 12,000 conductor meters (40,000 conductor feet) for each gauge of conductor.
(i) All insulated conductors must be continuously tested for insulation faults during the twinning operation with a method of testing acceptable to RUS. The length count and number of faults must be recorded. The information must be retained for a period of 6 months and be available for review by RUS when requested.
(ii) The voltages for determining compliance with the requirements of this section are as follows:
AWG Direct Current Voltages (kilovolts)
19 4.5
22 3.6
24 3.0
26 2.4
(8) Repairs to the conductor insulation during manufacture are permissible. The method of repair must be accepted by RUS prior to its use. The repaired insulation must be capable of meeting the relevant electrical requirements of this section.
(9) All repaired sections of insulation must be retested in the same manner as originally tested for compliance with paragraph (b)(7) of this section.
(10) The colored insulating material removed from or tested on the conductor, from a finished cable, must meet the performance requirements specified in ANSI/ICEA S-84-608-1988, paragraphs 3.4.1 through 3.4.6.
(c) Identification of pairs and twisting of pairs. (1) The insulation must be colored to identify:
(i) The tip and ring conductor of each pair; and
(ii) Each pair in the completed cable.
(2) The colors to be used in the pairs in the 25 pair group, together with the pair numbers must be in accordance with the table specified in ANSI/ICEA S-84-608-1988, paragraph 3.5.
(3) Positive identification of the tip and ring conductors of each pair by marking each conductor of a pair with the color of its mate is permissible. The method of marking must be accepted by RUS prior to its use.
(4) Other methods of providing positive identification of the tip and ring conductors of each pair may be employed if accepted by RUS prior to its use.
(5) The insulated conductors must be twisted into pairs.
(6) In order to provide sufficiently high crosstalk isolation, the pair twists must be designed to enable the cable to meet the capacitance unbalance and crosstalk loss requirements of paragraphs (k)(5), (k)(6), and (k)(8) this section.
(7) The average length of pair twists in any pair in the finished cable, when measured on any 3 meter (10 foot) length, must not exceed the requirement specified in ANSI/ICEA S-84-608-1988, paragraph 3.5.
(d) Forming of the cable core. (1) Twisted pairs must be assembled in such a way as to form a substantially cylindrical group.
(2) When desired for lay-up reasons, the basic group may be divided into two or more subgroups called units.
(3) Each group, or unit in a particular group, must be enclosed in bindings of the colors indicated for its particular pair count. The pair count, indicated by the colors of insulation, must be consecutive as indicated in paragraph (d)(6) of this section through units in a group.
(4) The filling compound must be applied to the cable core in such a way as to provide as near a completely filled core as is commercially practical.
(5) Threads and tapes used as binders must comply with the requirements specified in ANSI/ICEA S-84-608-1988, paragraphs 4.2 and 4.2.1.
(6) The colors of the bindings and their significance with respect to pair count must be as follows:
Group No. Color of Bindings Group Pair Count
1 White-Blue 1-25
2 White-Orange 26-50
3 White-Green 51-75
4 White-Brown 76-100
5 White-Slate 101-125
6 Red-Blue 126-150
7 Red-Orange 151-175
8 Red-Green 176-200
9 Red-Brown 201-225
10 Red-Slate 226-250
11 Black-Blue 251-275
12 Black-Orange 276-300
13 Black-Green 301-325
14 Black-Brown 326-350
15 Black-Slate 351-375
16 Yellow-Blue 376-400
17 Yellow-Orange 401-425
18 Yellow-Green 426-450
19 Yellow-Brown 451-475
20 Yellow-Slate 476-500
21 Violet-Blue 501-525
22 Violet-Orange 526-550
23 Violet-Green 551-575
24 Violet-Brown 576-600
(7) The use of the white unit binder in cables of 100 pairs or less is optional.
(8) When desired for manufacturing reasons, two or more 25 pair groups may be bound together with nonhygroscopic and nonwicking threads or tapes into a super-unit. Threads or tapes must meet the requirements specified in paragraph (d)(5) of this section. The group binders and the super-unit binders must be color coded such that the combination of the two binders must positively identify each 25 pair group from every other 25 pair group in the cable. Super-unit binders must be of the color shown in the following table:
Super-Unit Binder Colors
Pair Numbers Binder Color
1-600 White
601-1200 Red
1201-1800 Black
1801-2400 Yellow
2401-3000 Violet
3001-3600 Blue
3601-4200 Orange
4201-4800 Green
4801-5400 Brown
5401-6000 Slate
(9) Color binders must not be missing for more than 90 meters (300 feet) from any 25 pair group or from any subgroup used as part of a super-unit. At any cable cross-section, no adjacent 25 pair groups and no more than one subgroup of any super-unit may have missing binders. In no case must the total number of missing binders exceed three. Missing super-unit binders must not be permitted for any distance.
(10) Any reel of cable which contains missing binders must be labeled indicating the colors and location of the binders involved. The labeling must be applied to the reel and also to the cable.
(e) Screened cable. (1) Screened cable must be constructed such that a metallic, internal screen(s) must be provided to separate and provide sufficient isolation between the compartments to meet the requirements of this section.
(2) At the option of the user or manufacturer, identified service pairs providing for voice order and fault location may be placed in screened cables.
(i) The number of service pairs provided must be one per twenty-five operating pairs plus two for a cable size up to and including 400 pairs, subject to a minimum of four service pairs. The pair counts for screened cables are as follows:
Screened Cable Pair Counts
Carrier Pair Count Service Pairs Total Pair Count
24 4 28
50 4 54
100 6 106
150 8 158
200 10 210
300 14 314
400 18 418
(ii) The service pairs must be equally divided among the compartments. The color sequence must be repeated in each compartment.
(iii) The electrical and physical characteristics of each service pair must meet all the requirements set forth in this section.
(iv) The colors used for the service pairs must be in accordance with the requirements of paragraph (b)(5) of this section. The color code used for the service pairs together with the service pair number are shown in the following table:
Color Code For Service Pairs
Service Pair No. Color
Tip Ring
1 White Red
2 Black
3 Yellow
4 Violet
5 Red Black
6 Yellow
7 Violet
8 Black Yellow
9 Violet
(3) The screen tape must comply with the requirements specified in ANSI/ICEA S-84-608-1988, paragraphs 5.1 through 5.4.
(4) The screen tape must be tested for dielectric strength by completely removing the protective coating from one end to be used for grounding purposes.
(i) Using an electrode, over a 30 centimeter (1 foot) length, apply a direct current (dc) voltage at the rate of rise of 500 volts/second until failure.
(ii) No breakdown should occur below 8 kilovolts.
(f) Filling compound. (1) After or during the stranding operation and prior to application of the core wrap, filling compound must be applied to the cable core. The compound must be as nearly colorless as is commercially feasible and consistent with the end product requirements and pair identification.
(2) The filling compound must comply with the requirements specified in ANSI/ICEA S-84-608-1988, paragraphs 4.4 through 4.4.4.
(3) The individual cable manufacturer must satisfy RUS that the filling compound selected for use is suitable for its intended application. The filling compound must be applied to the cable in such a manner that the cable components will not be degraded.
(g) Core wrap. (1) The core wrap must comply with the requirements specified in ANSI/ICEA-S-84-608-1988, paragraph 4.3.
(2) If required for manufacturing reasons, white or colored binders of nonhygroscopic and nonwicking material may be applied over the core and/or wrap. When used, binders must meet the requirements specified in paragraph (d)(5) of this section.
(3) Sufficient filling compound must have been applied to the core wrap so that voids or air spaces existing between the core and the inner side of the core wrap are minimized.
(h) Flooding compound. (1) Sufficient flooding compound must be applied on all sheath interfaces so that voids and air spaces in these areas are minimized. When the optional armored design is used, the flooding compound must be applied between the core wrap and shield, between the shield and armor, and between the armor and the jacket so that voids and air spaces in these areas are minimized. The use of floodant over the outer metallic substrate is not required if uniform bonding, per paragraph (i)(7) of this section, is achieved between the plastic-clad metal and the jacket.
(2) The flooding compound must comply with the requirements specified in ANSI/ICEA S-84-608-1988, paragraph 4.5 and the jacket slip test requirements of appendix A, paragraph (III)(5) of this section.
(3) The individual cable manufacturer must satisfy RUS that the flooding compound selected for use is acceptable for the application.
(i) Shield and optional armor. (1) A single corrugated shield must be applied longitudinally over the core wrap.
(2) For unarmored cable the shield overlap must comply with the requirements specified in ANSI/ICEA S-84-608-1988, paragraph 6.3.2. Core diameter is defined as the diameter under the core wrap and binding.
(3) For cables containing the coated aluminum shield/coated steel armor (CACSP) sheath design, the coated aluminum shield must be applied in accordance with the requirements specified in ANSI/ICEA S-84-608-1988, paragraph 6.3.2, Dual Tape Shielding System.
(4) General requirements for application of the shielding material are as follows:
(i) Successive lengths of shielding tapes may be joined during the manufacturing process by means of cold weld, electric weld, soldering with a nonacid flux or other acceptable means.
(ii) Shield splices must comply with the requirements specified in ANSI/ICEA S-84-608-1988, paragraph 6.3.3.
(iii) The corrugations and the application process of the coated aluminum and copper bearing shields must comply with the requirements specified in ANSI/ICEA S-84-608-1988, paragraph 6.3.1.
(iv) The shielding material must be applied in such a manner as to enable the cable to pass the cold bend test specified in paragraph (l)(3) of this section.
(5) The following is a list of acceptable materials for use as cable shielding. Other types of shielding materials may also be used provided they are accepted by RUS prior to their use.
Standard Cable Gopher Resistant Cable
8-mil Coated Aluminum 1 10-mil Copper
5-mil Copper 6-mil Copper-CladStainless Steel 5 mil Copper-Clad Stainless Steel 5 mil Copper-Clad Alloy Steel 7-mil Alloy 194 6-mil Alloy 194 8-mil Coated Aluminum 1 and 6-mil Coated Steel 1
1 Dimensions of uncoated metal.
(i) The 8-mil aluminum tape must be plastic coated on both sides and must comply with the requirements of ANSI/ICEA S-84-608-1988, paragraph 6.2.2.
(ii) The 5-mil copper tape must comply with the requirements specified in ANSI/ICEA S-84-608-1988, paragraph 6.2.3.
(iii) The 10-mil copper tape must comply with the requirements specified in ANSI/ICEA S-84-608-1988, paragraph 6.2.4.
(iv) The 6-mil copper clad stainless steel tape must comply with the requirements specified in ANSI/ICEA S-84-608-1988, paragraph 6.2.5.
(v) The 5-mil copper clad stainless steel tape must be in the fully annealed condition and must conform to the requirements of American Society for Testing and Materials (ASTM) B 694-86, with a cladding ratio of 16/68/16.
(A) The electrical conductivity of the clad tape must be a minimum of 28 percent of the International Annealed Copper Standard (IACS) when measured per ASTM B 193-87.
(B) The tape must be nominally 0.13 millimeter (0.005 inch) thick with a minimum thickness of 0.11 millimeter (0.0045 inch).
(vi) The 5-mil copper clad alloy steel tape must be in the fully annealed condition and the copper component must conform to the requirements of ASTM B 224-80 and the alloy steel component must conform to the requirements of ASTM A 505-87, with a cladding ratio of 16/68/16.
(A) The electrical conductivity of the copper clad alloy steel tape must comply with the requirement specified in (5)(v)(A) of this section.
(B) The thickness of the copper clad alloy steel tape must comply with the requirements specified in (5)(v)(B) of this section.
(vii) The 6-mil and 7-mil 194 copper alloy tapes must comply with the requirements specified in ANSI/ICEA S-84-608-1988, paragraph 6.2.6.
(6) The corrugation extensibility of the coated aluminum shield must comply with the requirements specified in ANSI/ICEA S-84-608-1988, paragraph 6.4.
(7) When the jacket is bonded to the plastic coated aluminum shield, the bond between the jacket and shield must comply with the requirements specified in ANSI/ICEA S-84-608-1988, paragraph 7.2.6.
(8) A single plastic coated steel corrugated armor must be applied longitudinally directly over the coated aluminum shield listed in paragraph (i)(5) of this section with an overlap complying with the requirements specified in ANSI/ICEA S-84-608-1988, paragraph 6.3.2, Outer Steel Tape.
(9) Successive lengths of steel armoring tapes may be joined during the manufacturing process by means of cold weld, electric weld, soldering with a nonacid flux or other acceptable means. Armor splices must comply with the breaking strength and resistance requirements specified in ANSI/ICEA S-84-608-1988, paragraph 6.3.3.
(10) The corrugations and the application process of the coated steel armor must comply with the requirements specified in ANSI/ICEA S-84-608-1988, paragraph 6.3.1.
(i) The corrugations of the armor tape must coincide with the corrugations of the coated aluminum shield.
(ii) Overlapped portions of the armor tape must be in register (corrugations must coincide at overlap) and in contact at the outer edge.
(11) The armoring material must be so applied to enable the cable to pass the cold bend test specified in paragraph (l)(3) of this section.
(12) The 6-mil steel tape must be electrolytic chrome coated steel (ECCS) plastic coated on both sides and must comply with the requirements specified in ANSI/ICEA S-84-608-1988, paragraph 6.2.8.
(13) When the jacket is bonded to the plastic coated steel armor, the bond between the jacket and armor must comply with the requirement specified in ANSI/ICEA-S-84-608-1988, paragraph 7.2.6.
(j) Cable jacket. (1) The jacket must comply with the requirements specified in ANSI/ICEA S-84-608-1988, paragraph 7.2.
(2) The raw materials used for the cable jacket must comply with the requirements specified in ANSI/ICEA S-84-608-1988, paragraph 7.2.1.
(3) Jacketing material removed from or tested on the cable must meet the performance requirements specified in ANSI/ICEA S-84-608-1988, paragraphs 7.2.3 and 7.2.4.
(4) The thickness of the jacket must comply with the requirements specified in ANSI/ICEA S-84-608-1988, paragraph 7.2.2.
(k) Electrical requirements— (1) Conductor resistance. The direct current resistance of any conductor in a completed cable and the average resistance of all conductors in a Quality Control Lot must comply with the requirements specified in ANSI/ICEA S-84-608-1988, paragraph 8.1.
(2) Resistance unbalance. (i) The direct current resistance unbalance between the two conductors of any pair in a completed cable and the average resistance unbalance of all pairs in a completed cable must comply with the requirements specified in ANSI/ICEA S-84-608-1988, paragraph 8.2.
(ii) The resistance unbalance between tip and ring conductors shall be random with respect to the direction of unbalance. That is, the resistance of the tip conductors shall not be consistently higher with respect to the ring conductors and vice versa.
(3) Mutual capacitance. The average mutual capacitance of all pairs in a completed cable and the individual mutual capacitance of any pair in a completed cable must comply with the requirements specified in ANSI/ICEA S-84-608-1988, paragraph 8.3.
(4) Capacitance difference. (i) The capacitance difference for completed cables having 75 pairs or greater must comply with the requirement specified in ANSI/ICEA S-84-608-1988, paragraph 8.4.
(ii) When measuring screened cable, the inner and outer pairs must be selected from both sides of the screen.
(5) Pair-to-pair capacitance unbalance— (i) Pair-to-pair. The capacitance unbalance as measured on the completed cable must comply with the requirements specified in ANSI/ICEA S-84-608-1988, paragraph 8.5.
(ii) Screened cable. In cables with 25 pairs or less and within each group of multigroup cables, the pair-to-pair capacitance unbalance between any two pairs in an individual compartment must comply with the requirements specified in ANSI/ICEA S-84-608-1988, paragraph 8.5. The pair-to-pair capacitance unbalances to be considered must be:
(A) Between pairs adjacent in a layer in an individual compartment;
(B) Between pairs in centers of 4 pairs or less in an individual compartment; and
(C) Between pairs in adjacent layers in an individual compartment when the number of pairs in the inner (smaller) layer is 6 or less. The center is counted as a layer.
(iii) In cables with 25 pairs or less, the root-mean-square (rms) value is to include all the pair-to-pair unbalances measured for each compartment separately.
(iv) In cables containing more than 25 pairs, the rms value must include the pair-to-pair unbalances in the separate compartments.
(6) Pair-to-ground capacitance unbalance— (i) Pair-to-ground. The capacitance unbalance as measured on the completed cable must comply with the requirements specified in ANSI/ICEA S-84-608-1988, paragraph 8.6.
(ii) When measuring pair-to-ground capacitance unbalance all pairs except the pair under test are grounded to the shield and/or shield/armor except when measuring cables containing super units in which case all other pairs in the same super unit must be grounded to the shield.
(iii) The screen tape must be left floating during the test.
(iv) Pair-to-ground capacitance unbalance may vary directly with the length of the cable.
(7) Attenuation. (i) For nonscreened and screened cables, the average attenuation of all pairs on any reel when measured at 150 and 772 kilohertz must comply with the requirements specified in ANSI/ICEA S-84-608-1988, paragraph 8.7, Foam and/or Foam-Skin Column.
(ii) For T1C type cables over 12 pairs, the maximum average attenuation of all pairs on any reel must not exceed the values listed below when measured at a frequency of 1576 kilohertz at or corrected to a temperature of 20 ±1 °C. The test must be conducted in accordance with ASTM D 4566-90.
AWG Maximum Average Attenuation decibel/kilometer (dB/km) (decibel/mile)
19 14.9 (24.0)
22 21.6 (34.8)
24 27.2 (43.8)
(8) Crosstalk loss. (i) The equal level far-end power sum crosstalk loss (FEXT) as measured on the completed cable must comply with the requirements specified in ANSI/ICEA S-84-608-1988, paragraph 8.8, FEXT Table.
(ii) The near-end power sum crosstalk loss (NEXT) as measured on completed cable must comply with the requirements specified in ANSI/ICEA S-84-608-1988, paragraph 8.8, NEXT Table.
(iii) Screened cable. (A) For screened cables the NEXT as measured on the completed cable must comply with the requirements specified in ANSI/ICEA S-84-608-1988, paragraphs 8.9 and 8.9.1.
(B) For T1C screened cable the NEXT as measured on the completed cable must comply with the requirements specified in ANSI/ICEA S-84-608-1988, paragraphs 8.9 and 8.9.2.
(9) Insulation resistance. The insulation resistance of each insulated conductor in a completed cable must comply with the requirement specified in ANSI/ICEA S-84-608-1988, paragraph 8.11.
(10) High voltage test. (i) In each length of completed cable, the insulation between conductors must comply with the requirements specified in ANSI/ICEA S-84-608-1988, paragraph 8.12, Foam and/or Foam-Skin Column.
(ii) In each length of completed cable, the dielectric between the shield and/or armor and conductors in the core must comply with the requirements specified in ANSI/ICEA S-84-608-1988, paragraph 8.13, Single Jacketed, Foam and/or Foam-Skin Column. In screened cable the screen tape must be left floating.
(iii) Screened cable. (A) In each length of completed screened cable, the dielectric between the screen tape and the conductors in the core must comply with the requirement specified in ANSI/ICEA S-84-608-1988, paragraph 8.14.
(B) In this test, the cable shield and/or armor must be left floating.
(11) Electrical variations. (i) Pairs in each length of cable having either a ground, cross, short, or open circuit condition will not be permitted.
(ii) The maximum number of pairs in a cable which may vary as specified in paragraph (k)(11)(iii) of this section from the electrical parameters given in this section are listed below. These pairs may be excluded from the arithmetic calculation.
Nominal Pair Count Maximum Number of Pairs With Allowable Electrical Variation
6-100 1
101-300 2
301-400 3
401-600 4
601 and above 6
(iii) Parameter variations. (A) Capacitance unbalance-to-ground. If the cable fails either the maximum individual pair or average capacitance unbala