571.403—Standard No. 403; Platform lift systems for motor vehicles.

S1. Scope. This standard specifies requirements for platform lifts used to assist persons with limited mobility in entering or leaving a vehicle.
S2. Purpose. The purpose of this standard is to prevent injuries and fatalities to passengers and bystanders during the operation of platform lifts installed in motor vehicles.
S3. Application. This standard applies to platform lifts manufactured on and after April 1, 2005, that are designed to carry passengers into and out of motor vehicles.
S4. Definitions.
Bridging device means that portion of a platform lift that provides a transitional surface between the platform surface and the surface of the vehicle floor within the platform threshold area.
Cycle means deploying a platform lift from a stowed position, lowering the lift to the ground level loading position, raising the lift to the vehicle floor loading position, and stowing the lift. The term includes operation of any wheelchair retention device, bridging device, and inner roll stop.
Deploy means with respect to a platform, its movement from a stowed position to an extended position or, one of the two loading positions. With respect to a wheelchair retention device or inner roll stop, the term means the movement of the device or stop to a fully functional position intended to prevent a passenger from disembarking the platform or being pinched between the platform and vehicle.
Floor reference plane means the plane perpendicular to the longitudinal vehicle reference plane for platform lifts that deploy from the side of the vehicle or perpendicular to the transverse vehicle reference plane for platform lifts that deploy from the rear of the vehicle, and tangent to the outermost edge of the vehicle floor surface adjacent to the lift platform. (See figure 1.)
Gap means a discontinuity in a plane surface, or between two adjacent surfaces.
Inner roll-stop means a device that is located at the edge of the platform that a passenger or mobility aid must traverse when entering and exiting the platform from the vehicle floor loading position and that is designed to retain mobility aids on the platform surface during the range of passenger operation.
Lift reference plane means the plane that is defined by two orthogonal axes passing through the geometric center of the platform surface of a platform lift. One axis is perpendicular to the platform reference plane and the other is parallel to the direction of wheelchair travel during loading of the lift. (See figure 1.)
Loading position means, with respect to a platform lift, a position at which a passenger can either embark or disembark the lift. The two loading positions are at vehicle floor and ground level.
Longitudinal vehicle reference plane means the plane that is perpendicular to the floor reference plane and contains the longitudinal axis of the vehicle when the vehicle body is level and moves along with the vehicle body in response to the loading of the vehicle suspension. (See figure 1.)
Outer barrier is a particular wheelchair retention device that is located on the edge of the platform, is traversed during ground level loading and unloading, and is designed to retain wheelchairs on the platform surface during the range of passenger operation.
Platform means that portion of a platform lift on which the mobility aid or passenger rests while being raised or lowered.
Platform lift means a level change device, including any integration of existing vehicle components, and excluding a ramp, used to assist persons with limited mobility in entering or leaving a vehicle.
Platform reference plane means a plane tangent to the platform surface at its geometric center. (See figure 1.)
Platform surface means the passenger-carrying surface of the lift platform.
Platform threshold area means the rectangular area of the vehicle floor defined by moving a line that lies on the portion of the edge of the vehicle floor directly adjacent to the platform, through a distance of 457 mm (18 inches) across the vehicle floor in a direction perpendicular to the edge. Any portion of a bridging device that lies on this area must be considered part of that area.
Private use lift means a platform lift certified to the requirements for private use lifts and requirements in this standard for all lifts.
Public use lift means a platform lift certified to the requirements for public use lifts and requirements in this standard for all lifts.
Range of passenger operation means the portion of the lift cycle during which the platform is at or between the vehicle floor and ground level loading positions excluding any stow and deploy operations.
Standard test load means a static load or mass centered on the test pallet such that the total combined mass for public-use lifts shall be 272 kg (600 lb), and the total combined mass for private-use lifts shall be the lift manufacturer's stated rated load or 181 kg (400 lb), whichever is greater.
Stow means with respect to a platform, its movement from a position within the range of passenger operation to the position maintained during normal vehicle travel; and, with respect to a wheelchair retention device, bridging device, or inner-roll stop, its movement from a fully functional position to a position maintained during normal vehicle travel.
Test pallet means a platform on which required test loads are placed for handling and moving.
Transverse vehicle reference plane means the plane that is perpendicular to the floor reference plane and contains the transverse axis of the vehicle when the vehicle body is level and that moves along with the vehicle body in response to the loading of the vehicle suspension. (See figure 1.)
Wheelchair retention device means a device designed to prevent wheelchairs from leaving the edge of the platform used for ground level loading and unloading during the range of passenger operation.
S5. Incorporation by reference.
S5.1The Society of Automotive Engineers (SAE) Recommended Practice J578, revised June 1995, “Color Specification” (SAE J578, rev. June 95) is hereby incorporated into S6.1.4 by reference.
S5.2The Society of Automotive Engineers (SAE) Recommended Practice J211/1, revised March 1995 “Instrumentation for Impact Test— Part 1 —Electronic Instrumentation” (SAE J211/1, rev. Mar 95) is hereby incorporated into S6.2.3 by reference.
S5.3The American Society for Testing and Materials (ASTM) Recommended Practice B456-95 “Standard Specification for Electrodeposited Coatings of Copper Plus Nickel Plus Chromium and Nickel Plus Chromium” (ASTM B456-95) is hereby incorporated into S6.3.1 by reference.
S5.4The Rehabilitation Engineering and Assistive Technology Society of North America (ANSI/RESNA) Standard WC/Vol.1-1998 Section 13, “Determination of Coefficient of Friction of Test Surfaces” (ANSI/RESNA WC/Vol.1—1998, sec. 13) is hereby incorporated into S7.2.2 by reference.
S5.5The American Society for Testing and Materials (ASTM) Recommended Practice B117-97 “Standard Practice for Operating Salt Spray (Fog) Apparatus” (ASTM B117-97) is hereby incorporated into S7.3.2 by reference.
S5.6The Director of the Federal Register approved the materials incorporated by reference in accordance with 5 U.S.C. 552(a) and 1 CFR part 51 (See § 571.5 of this part ). Copies of the materials may be inspected at NHTSA's Technical Reference Library, 400 Seventh Street SW., Room 5109, Washington, DC or at the National Archives and Records Administration (NARA). For information on the availability of this material at NARA, call 202-741-6030, or go to: http://www.archives.gov/federal_register/code_of_federal_regulations/ibr_locations.html.
S5.6.1The SAE materials referred to in S5.1 and S5.2 are available from the Society of Automotive Engineers, Inc., 400 Commonwealth Drive, Warrendale, PA. 15096.
S5.6.2The ASTM materials referred to in S5.3 and S5.5 are available from ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959.
S5.6.3The ANSI/RESNA materials referred to in S5.4 are available from RESNA, 1700 North Moore St., Suite 1540, Arlington, VA 22209-1903.
S6. Requirements.
S6.1Threshold warning signal.
S6.1.1Except when the platform lift is operated manually in backup mode as required by S6.9, the lift must meet the requirements of S6.1.2 and S6.1.3. The lift is tested in accordance with S7.4 to determine compliance with this section.
S6.1.2.Private-use lifts: Except for platform lifts where platform loading takes place wholly over the vehicle floor, a visual or audible warning must activate if the platform is more than 25 mm (1 inch) below the platform threshold area and portions of a passenger's body or mobility aid is on the platform threshold area defined in S4 when tested in accordance with S7.4.
S6.1.3Public-use lifts: A visual and audible warning must activate if the platform is more than 25 mm (1 inch) below the platform threshold area and portions of a passenger's body or mobility aid is on the platform threshold area defined in S4 when tested in accordance with S7.4.
S6.1.4The visual warning required by S6.1.2 and S6.1.3 must be a flashing red beacon as defined in SAE J578, June 95, must have a minimum intensity of 20 candela, a frequency from 1 to 2 Hz, and must be installed such that it does not require more than ±15 degrees side-to-side head rotation as viewed by a passenger backing onto the platform from the interior of the vehicle. If a lift has only a visual alarm and the lift manufacturer specifies that the passenger must load onto the platform in a forward direction from the vehicle floor, the visual alarm must be located such that it does not require more than ±15 degrees side-to-side head rotation as viewed by a passenger traversing forward onto the platform.
S6.1.5The audible warning required by S6.1.2 and S6.1.3 must be a minimum of 85 dBA between 500 and 3000 Hz.
S6.1.6The intensity of the visual or audible warnings required by S6.1.2 and S6.1.3 is measured at the location 914 mm (3 ft) above the center of the platform threshold area. (See figure 2.)
S6.2Platform lift operational requirements.
S6.2.1General. Throughout the range of passenger operation and during the lift operations specified in S7.9.3 through S7.9.8, the platform lift must meet the requirements of S6.2.2 through S6.2.4. These requirements must be satisfied both with and without a standard load on the lift platform, except for S6.2.2.2, which must be satisfied without any load.
S6.2.2Maximum platform velocity.
S6.2.2.1Throughout the range of passenger operation specified in S7.9.4 through S7.9.7, both the vertical and horizontal velocity of the platform must be less than or equal to 152 mm (6 inches) per second when measured at the geometric center of the platform when the platform is unloaded and at the geometric center of the top, horizontal surface of the standard load specified in S7.1.1 when the platform is loaded.
S6.2.2.2Except for platform lifts that manually stow (fold) and deploy (unfold), during the stow and deploy operations specified in S7.9.3 through S7.9.8, both the vertical and horizontal velocity of any portion of the platform must be less than or equal to 305 mm (12 inches) per second.
S6.2.3Maximum platform acceleration. Throughout the range of passenger operation specified in S7.9.4 through S7.9.7, both the horizontal and vertical acceleration of the platform must be less than or equal to 0.3 g after the accelerometer output is filtered with a channel frequency class (CFC) 3 filter. The filter must meet the requirements of SAE Recommended Practice J211/1, rev. Mar 95, with FH = 3 Hz and FN = 5 Hz. The accelerometer is located at the geometric center of the platform and is mounted directly on the platform when it is unloaded and on the geometric center of the top, horizontal surface of the standard load specified in S7.1.1 when the platform is loaded.
S6.2.4Maximum noise level of public use lifts. Except as provided in S6.1.5, throughout the range of passenger operation specified in S7.9.4 through S7.9.7, the noise level of a public use lift may not exceed 80 dBa as measured at any lift operator's position designated by the platform lift manufacturer for the intended vehicle and in the area on the lift defined in S6.4.2.1. Lift operator position measurements are taken at the vertical centerline of the control panel 30.5 cm (12 in) out from the face of the control panel. In the case of a lift with a pendant control (i.e., a control tethered to the vehicle by connective wiring), measurement is taken at the vertical centerline of the control panel 30.5 cm (12 in) out from the face of the control panel while the control panel is in its stowed or stored position. For the lift operator positions outside of the vehicle, measurements are taken at the intersection of a horizontal plane 157 cm (62 in) above the ground and the vertical centerline of the face of the control panel after it has been extended 30.5 cm (12 in) out from the face of the control panel.
S6.3Environmental resistance.
S6.3.1Internally mounted platform lifts. On platform lifts and their components internal to the occupant compartment of the vehicle or internal to other compartments that provide protection from the elements when stowed, attachment hardware must be free of ferrous corrosion on significant surfaces except for permissible ferrous corrosion, as defined in FMVSS No. 209, at peripheral surface edges or edges of holes on under-floor reinforcing plates and washers after being subjected to the conditions specified in S7.3. Alternatively, such hardware must be made from corrosion-resistant steel containing at least 11.5 percent chromium per FMVSS 571.209, S5.2(a) or must be protected against corrosion by an electrodeposited coating of nickel, or copper and nickel with at least a service condition number of SC2, and other attachment hardware must be protected by an electrodeposited coating of nickel, or copper and nickel with a service condition number of SC1, in accordance with ASTM B456-95, but such hardware may not be racked for electroplating in locations subjected to maximum stress. The manufacturer shall select the option by the time it certifies the lift and may not thereafter select a different option for the lift. The lift must be accompanied by all attachment hardware necessary for its installation on a vehicle.
S6.3.2Externally mounted platform lifts. On platform lifts and their components external to the occupant compartment of the vehicle and external to other compartments that provide protection from the elements when stowed, the lift and its components must be free of ferrous corrosion on significant surfaces except for permissible ferrous corrosion, as defined in FMVSS No. 209, at peripheral surface edges and edges of holes and continue to function properly after being subjected to the conditions specified in S7.3. Alternatively, such lifts and all associated hardware and components must be completely made from corrosion-resistant steel containing at least 11.5 percent chromium per FMVSS 571.209, S5.2(a). The manufacturer shall select the option by the time it certifies the lift and may not thereafter select a different option for the lift. The lift must be accompanied by all attachment hardware necessary for its installation on a vehicle.
S6.4Platform requirements.
S6.4.1General. Throughout the range of passenger operations and during the platform lift operations specified in S7.9.4 through S7.9.7, the platform lift must meet the requirements of S6.4.2 through S6.4.12. The requirements of S6.4.2 through S6.4.6, S6.4.7.4, S6.4.9.4, S6.4.9.5, S6.4.9.6, and S6.4.9.8 must be satisfied both with and without a standard load on the lift platform
S6.4.2Unobstructed platform operating volume.
S6.4.2.1Public use lifts. For public use lifts, the minimum platform operating volume is the sum of an upper part and a lower part (see Figure 3). The lower part is a rectangular solid whose base is 725 mm (28.5 in) wide by the length of the platform surface, whose height is 50 mm (2 in), and which is resting on the platform surface with each side of the base parallel with the nearest side of the platform surface. The width is perpendicular to the lift reference plane and the length is parallel to the lift reference plane (See Figure 1). The upper part is a rectangular solid whose base is 760 mm (30 in) by 1,220 mm (48 in) long, whose height is 711 mm (28 in), and whose base is tangent to the top surface of the lower rectangular solid (see Figure 3). The centroids of both the upper and lower parts coincide with the vertical centroidal axis of the platform reference plane (see Figure 1).
S6.4.2.2Private use lifts. For private use lifts, the platform operating volume is as specified by the lift manufacturer and identified in the lift insert to the vehicle owner's manual.
S6.4.3Platform surface protrusions.
S6.4.3.1Public use lifts. For public use lifts, except as required for deployment of the wheelchair retention device and inner roll stop, throughout the range of passenger operation, the platform surface may not have protrusions which rise more than 6.5 mm (0.25 in) above the platform surface, measured perpendicular to the platform surface by a device with its base centered between 50-100 mm (2-4 in) from the protrusion. Any cross-sectional dimension of the base of the protrusion measurement device must be greater than or equal to 25mm (1 in) and less than or equal to 50 mm (2 in).
S6.4.3.2Private use lifts. For private use lifts, except as required for deployment of the wheelchair retention device and inner roll stop, the platform surface may not have protrusions which rise more than 13 mm (0.5 in) above the platform surface, measured perpendicular to the platform surface by a device with its base centered between 50-100 mm (2-4 in) from the protrusion. All portions of the sides of a protrusion that are between 6.5 mm (0.25 in) and 13 mm (0.5 in) above the platform must have a slope not greater than 1:2, measured with respect to the platform surface at the location of the protrusion. Any cross-sectional dimension of the base of the protrusion measurement device must be greater than or equal to 25mm (1 in) and less than or equal to 50 mm (2 in).
S6.4.4Gaps, transitions and openings.
S6.4.4.1When the platform lift is at the ground level loading position, any vertical surface transition measured perpendicular to the ground over which a passenger may traverse to enter or exit the platform, may not be greater than 6.5 mm (0.25 in). When the lift is at the vehicle level loading position, any vertical surface transition measured perpendicular to the platform threshold area over which a passenger may traverse to enter or exit the platform, may not be greater than 6.5 mm (0.25 in).
S6.4.4.2When the platform lift is at the ground or vehicle level loading position, the slope of any surface over which a passenger may traverse to enter or exit the platform must have a rise to run not greater than 1:2 on the portion of the rise between 6.5 mm (0.25 in) and 13 mm (0.5 in), and 1:8 on the portion of the rise between 13 mm (0.5 in) and 75 mm (3 in). The rise of any sloped surface may not be greater than 75 mm (3 inches). When the lift is at the ground level loading position, measurements are made perpendicular to the ground. When the lift is at the vehicle level loading position, measurements are made perpendicular to the platform threshold area.
S6.4.4.3When the inner roll stop or any outer barrier is deployed, any gap between the inner roll stop and lift platform and any gap between the outer barrier and lift platform must prevent passage of the clearance test block specified in S7.1.3 when its long axis is held perpendicular to the platform reference plane.
S6.4.4.4When the platform is at the vehicle floor or ground level loading position, any horizontal gap over which a passenger may traverse to enter or exit the platform must prevent passage of a 13 mm (0.5 inch) diameter sphere.
S6.4.4.5Any opening in that portion of the platform surface that coincides with the unobstructed platform operating volume described in S6.4.2 must prevent passage of a 19 mm (0.75 inch) diameter sphere.
S6.4.4.6Any gap between the platform sides and edge guards which move with the platform must prevent passage of a 13 mm (0.5 inch) diameter sphere. Where structures fixed to the vehicle are used as edge guards, the horizontal gap between the platform side and vehicle structure must prevent passage of a 6.5 mm (0.25 inch) diameter sphere.
S6.4.5Platform deflection. The angle of the deployed platform, when stationary, and loaded with a standard load, must not exceed 4.8 degrees with respect to the vehicle floor and must not exceed 3 degrees with respect to the platform's unloaded position. The angles are measured between a vertical axis from the vehicle floor and an axis normal to the platform center as shown in Figure 1.
S6.4.6Edge guards.
S6.4.6.1The platform lift must have edge guards that extend continuously along each side of the lift platform to within 75 mm (3 inches) of the edges of the platform that are traversed while entering and exiting the platform at both the ground and vehicle floor level loading positions. The edge guards must be parallel to the direction of wheelchair movement during loading and unloading. Alternatively, when tested in accordance with S7.7.4, all portions of the wheels of the wheelchair test device must remain above the platform surface and after the control is released to Neutral, at the end of each attempt to steer the test device off the platform, all wheels of the wheelchair test device must be in contact with the platform surface. The manufacturer shall select the option by the time it certifies the lift and may not thereafter select a different option for the lift.
S6.4.6.2Edge guards that move with the platform must have vertical sides facing the platform surface and a minimum height of 38 mm (1.5 inches), measured vertically from the platform surface.
S6.4.6.3Except whenever any part of the platform surface is below a horizontal plane 75 mm (3 inches) above the ground, edge guards must be deployed throughout the range of passenger operation.
S6.4.7Wheelchair retention.
S6.4.7.1Impact I. Except for platform lifts designed so that platform loading takes place wholly over the vehicle floor, the lift must have a means of retaining the test device specified in S7.1.2. After impact, the test device must remain upright with all of its wheels on the platform surface throughout its range of passenger operation, except as provided in S6.4.7.4. The lift is tested in accordance with S7.7 to determine compliance with this section.
S6.4.7.2Impact II. For platform lifts designed so that platform loading takes place wholly over the vehicle floor, the lift must have a means of retaining the test device specified in S7.1.2. After impact, the test device must remain upright with all of its wheels on the platform surface, throughout the range of passenger operation, except as provided in S6.4.7.4. The lift is tested in accordance with S7.7 to determine compliance with this section.
S6.4.7.3Overload. The deployed wheelchair retention device(s) must be capable of sustaining 7,117 N (1,600 lb force) when tested in accordance with S7.13. No separation, fracture, or breakage of the wheelchair retention device may occur as a result of conducting the test in S7.13.
S6.4.7.4Deployment. Except whenever any part of the platform surface is below a horizontal plane 75 mm (3 in) above the ground, the wheelchair retention device(s) must be deployed throughout the range of passenger operation.
S6.4.8Inner roll stop.
S6.4.8.1Public use lifts. Public use lifts must have an inner roll stop that meets the requirements of S6.4.8.3.
S6.4.8.2Private use lifts. Private use lifts must:
S6.4.8.3Requirements. When tested in accordance with S7.8, platform lifts must have an inner roll stop that provides a means that prevents:
S6.4.9Handrails.
S6.4.9.1Public use lifts: Public use lifts must have a handrail located on each side of the lift that meets the requirements of S6.4.9.3 through S6.4.9.9.
S6.4.9.2Private use lifts: Private use lifts are not required to be equipped with handrails. Private use lifts that are equipped with handrails must meet the requirement of S6.4.9.3 through S6.4.9.9.
S6.4.9.3The graspable portion of each handrail may not be less than 760 mm (30 inches) and more than 965 mm (38 inches) above the platform surface, measured vertically.
S6.4.9.4The cross section of the graspable portion of each handrail may not be less than 31.5 mm (1.25 inches) and more than 38 mm (1.5 inches) in diameter or width, and may not have less than a 3.2 mm (0.125 inch) radii on any corner.
S6.4.9.5The vertical projection of the graspable portion of each handrail must intersect two planes that are perpendicular to the platform reference plane and to the direction of travel of a wheelchair on the lift when entering or exiting the platform, and are 203 mm (8 inches) apart.
S6.4.9.6The handrails must move such that the position of the handrails relative to the platform surface does not change.
S6.4.9.7When tested in accordance with S7.12.1, each handrail must withstand 445 N (100 pounds force) applied at any point and in any direction on the handrail without more than 25 mm (1 inch) of displacement relative to the platform surface. After removal of the load, the handrail must exhibit no permanent deformation.
S6.4.9.8When tested in accordance with S7.12.1, there must be at least 38 mm (1.5 inches) of clearance between each handrail and any portion of the vehicle, throughout the range of passenger operation.
S6.4.9.9When tested in accordance with S7.12.2, each handrail must withstand 1,112 N (250 lb/f) applied at any point and in any direction on the handrail without sustaining any failure, such as cracking, separation, fracture, or more than 100 mm (4 inches) of displacement of any point on the handrails relative to the platform surface.
S6.4.10Platform markings on public use lifts. Throughout the range of passenger operation, all edges of the platform surface, the visible edge of the vehicle floor or bridging device adjacent to the platform lift, and any designated standing area on a public use lift must be outlined. The outlines must be at least 25 mm (1 in) wide and of a color that contrasts with its background by 60 percent, determined according to the following equation:
Contrast = 100 × [(L1−L2)/L1]
Where:
L1 = luminance of the lighter color or shade, and
L2 = luminance of the darker color or shade.
L1 and L2 are measured perpendicular to the platform surface with illumination provided by a diffuse light and a resulting luminance of the platform surface of 323 lm/m2 (30 lumen/sqft).
S6.4.11Platform slip resistance. When tested in accordance with S7.2, the coefficient of friction, in any direction, of any part of a wet platform surface may not be less than 0.65.
S6.5Structural integrity.
S6.5.1Fatigue endurance.
S6.5.1.1Public use lifts. Except for lifts that manually stow (fold) and deploy (unfold), public use lifts must remain operable when operated through a total of 15,600 cycles: 7,800 unloaded Raise/Lower and Stow/Deploy operations and 7,800 loaded Raise/Lower operations as specified in S7.10. Public use lifts that manually stow (fold) and deploy (unfold) must remain operable when operated through a total of 15,600 cycles: 7,800 unloaded Raise/Lower operations and 7,800 loaded Raise/Lower operations. No separation, fracture, or breakage of any vehicle or lift component may occur as a result of conducting the fatigue test in S7.10.
S6.5.1.2Private use lifts. Except for lifts that manually stow (fold) and deploy (unfold), private use lifts must remain operable when operated through a total of 4,400 cycles: 2,200 unloaded Raise/Lower and Stow/Deploy operations and 2,200 loaded Raise/Lower operations as specified in S7.10. Private use lifts that manually stow (fold) and deploy (unfold) must remain operable when operated through a total of 4,400 cycles: 2,200 unloaded Raise/Lower operations and 2,200 loaded Raise/Lower operations. No separation, fracture, or breakage of any vehicle or lift component may occur as a result of conducting the fatigue test in S7.10.
S6.5.2Proof load. The platform lift must be capable of holding three times the standard load, as specified in S7.11, without separation, fracture, or breakage of any vehicle or lift component. After the test, the lift must pass Static Load Test I as specified in S7.9.
S6.5.3Ultimate load. The platform lift must be capable of holding four times the standard load, as specified in S7.14, without separation, fracture, or breakage of the platform, supporting structure, or lifting mechanism.
S6.6Platform free fall limits. In the event of any single-point failure of systems for raising, lowering or supporting the platform, any portion of the platform, loaded as specified in S7.1.1, may not fall vertically faster than 305 mm (12 in) per second or change angular orientation more than 2 degrees from the orientation prior to the failure. This requirement applies whenever the lift is under primary power source operation or manual backup operation.
S6.7Control panel switches.
S6.7.1The platform lift must meet the requirements of S6.7.2 through S6.7.8 and, when operated by means of the control panel switches specified in S6.7.2, must perform the lift operations specified in S7.9.
S6.7.2The platform lift system must have control panel switches that perform not less than the following functions: (platform lifts that manually stow (fold) and deploy (unfold) are exempt from S6.7.2.2 and S6.7.2.5).
S6.7.2.1Enables and disables the lift control panel switches. This function must be identified as “POWER” if located on the control. The POWER function must have two states: “ON” and “OFF”. The “ON” state must allow platform lift operation. When the POWER function is in the “ON” state, an indicator light on the controls must illuminate. The “OFF” state must prevent lift operation and must turn off the indicator light. Verification with this requirement is made throughout the lift operations specified in S7.9.3 through S7.9.8.
S6.7.2.2Moves the lift from a stowed position to an extended position or, to one of the two loading positions. This function must be identified as “DEPLOY” or “UNFOLD” on the control.
S6.7.2.3Lowers the lift platform. This function must be identified as “Down” or “Lower” on the control.
S6.7.2.4Raises the lift platform. This function must be identified as “Up” or “Raise” on the control.
S6.7.2.5Moves the lift from a position within the range of passenger operation to a stowed position. This function must be identified as “Stow” or “Fold” on the control.
S6.7.3Except for the Power function described in S6.7.2.1, the functions specified in S6.7.2 must activate in a momentary fashion, by one switch or by a combination of switches. Verification with this requirement is made throughout the lift operations specified in S7.9.3 through S7.9.8.
S6.7.4Except for the POWER function described in S6.7.2.1, the control panel switches specified in S6.7.2 must prevent the simultaneous performance of more than one function. Verification with this requirement is made throughout the lift operations specified in S7.9.3 through S7.9.8.
S6.7.5Any single-point failure in the control panel switches may not prevent the operation of any of the interlocks as specified in S6.10.
S6.7.6Identification of operating functions.
S6.7.6.1Each operating function of each platform lift control must be identified with characters that are at least 2.5 mm (0.1 in) in height.
S6.7.6.2Public use lifts: Public use lifts must have characters that are illuminated in accordance with S5.3 of Standard No. 101, when the vehicle's headlights are illuminated.
S6.7.7Control location for public use lifts: In public use lifts, except for the backup operation specified in S6.9, all control panel switches must be positioned together and in a location such that the lift operator has a direct, unobstructed view of the platform lift passenger and the passenger's mobility aid, if applicable. Verification with this requirement is made throughout the lift operations specified in S7.9.3 through S7.9.8. Additional controls may be positioned in other locations.
S6.7.8Operating instructions: Simple instructions regarding the platform lift operating procedures, including backup operations as specified by S6.9, must:
S6.7.8.1Be located near the controls.
S6.7.8.2Have characters with a minimum height of 2.5 mm (0.1 in) and written in English.
S6.7.8.3Public use lifts: Include the statement “DOT—Public Use Lift”.
S6.7.8.4Private use lifts: Include the statement “DOT—Private Use Lift”, the manufacturer's rated load for the lift, and, if applicable, instructions indicating that the wheelchair occupant must back onto the lift when loading from the ground.
S6.8Jacking prevention.
S6.8.1Except when the platform lift is operated in backup mode as required by S6.9, throughout the lift operations specified in S7.9.4 and S7.9.7, the lift system must meet the requirements of S6.8.2, both with and without a standard load on the lift.
S6.8.2The control system or platform lift design must prevent the raising of any portion of the vehicle by the lift system when lowering the lift is attempted while the lift is at the ground level loading position.
S6.9Backup operation.
S6.9.1The platform lift must be equipped with a manual backup operating mode that can, in the event there is a loss of the primary power source for lift operation or a lift malfunction, deploy the lift, lower the loaded platform to the ground level loading position, raise the unloaded platform to the vehicle floor loading position, and stow the lift. During backup operation of the lift, the wheelchair retention device and inner roll stop must be manually deployable and stowable. The operating instructions near the lift controls and in the vehicle owner's manual insert, as specified in S6.7.8 and S6.12.2, must contain information on manual backup operation which must include manual operation of the wheelchair retention device and inner roll stop during backup operation of the lift.
S6.10Interlocks.
S6.10.1Except when the platform lift is operated in backup mode as required by S6.9, the requirements of S6.10.2 must be met, both with and without a standard load on the lift.
S6.10.2The platform lift system must have interlocks or operate in such a manner when installed according to the installation instructions, as to prevent:
S6.10.2.1Forward or rearward mobility of the vehicle unless the platform lift is stowed. The design of this system must be such that it discourages accidental release and does not affect vehicle movement when the lift is stowed until the vehicle is stopped and the lift deployed. Verification with this requirement is made throughout the lift operations specified in S7.9.2 and S7.9.3.
S6.10.2.2Operation of the platform lift from the stowed position until forward and rearward mobility of the vehicle is inhibited, by means of placing the transmission in park or placing the transmission in neutral and actuating the parking brake or the vehicle service brakes by means other than the operator depressing the vehicle's service brake pedal. Verification with this requirement is made throughout the lift operations specified in S7.9.2 and S7.9.3.
S6.10.2.3Stowing of the platform lift when occupied by portions of a passenger's body, and/or a mobility aid. Platform lifts designed to be occupied while stowed and platform lifts that manually stow (fold) are excluded from this requirement. Verification with this requirement is made using the test device specified in S7.1.4. Move the deployed platform lift to a position within the range of passenger operation where it will stow if the control specified in S6.7.2.5 is actuated. Place the test device specified in S7.1.4 on its narrowest side on any portion of the platform surface that coincides with the unobstructed platform operating volume described in S6.4.2. Using the operator control specified in S7.7.2.5, attempt to stow the lift. The interlock must prevent the lift from stowing.
S6.10.2.4Movement of the platform up or down unless the inner roll stop required to comply with S6.4.8 is deployed. When the platform reaches a level where the inner roll stop is designed to deploy, the platform must stop unless the inner roll stop has deployed. Verification with this requirement is made by performing the test procedure specified in S7.6.
S6.10.2.5Movement of the platform up or down, throughout the range of passenger operation, when the platform surface is above a horizontal plane 75 mm (3 in) above the ground level loading position, unless the wheelchair retention device required to comply with S6.4.7 is deployed throughout the range of passenger operations. Verification of compliance is made using the test procedure specified in S 7.5.
S6.10.2.6In the case of a platform lift that is equipped with an outer barrier, deployment of the outer barrier, when it is occupied by portions of a passenger's body or mobility aid throughout the lift operations. Verification of compliance is made using the test procedure specified in S 7.5.
S6.10.2.7Deployment of any inner roll stop required to comply with S6.4.8, when the inner roll stop is occupied by portions of a passenger's body or mobility aid throughout the lift operations. Verification of compliance with this requirement uses the test procedure specified in S7.6.
S6.11Operations counter. The platform lift must have an operation or cycle counter that records each complete Up/Down (Raise/Lower) operation throughout the range of passenger operation. Determination of compliance with this requirement is made during the lift operations specified in S7.9.4 and S7.9.5.
S6.12Vehicle owner's manual insert. The lift manufacturer must provide with the lift, inserts for the vehicle owner's manual that provide specific information about the platform lift. The vehicle owner's manual insert must be written in English and must include:
S6.12.1A maintenance schedule that includes maintenance requirements that have, at a minimum, some dependency on the number of cycles on the operations counter specified in S6.11.
S6.12.2Instructions regarding the platform lift operating procedures, including backup operations, as specified by S6.9.
S6.12.3Public use lifts: In addition to meeting the requirements of S6.12.1 and S6.12.2, the owner's manual insert for public use lifts must also include:
S6.12.3.1The statement “DOT—Public Use Lift” on the front cover of the vehicle owner's manual insert; and
S6.12.3.2The statement “DOT—Public Use Lift” verifies that this platform lift meets the “public use lift ” requirements of FMVSS No. 403. This lift may be installed on all vehicles appropriate for the size and weight of the lift, but must be installed on buses, school buses, and multi-purpose passenger vehicles other than motor homes with a gross vehicle weight rating (GVWR) that exceeds 4,536 kg (10,000 lb).”
S6.12.4Private use lifts: In addition to meeting the requirements of S6.12.1 and S6.12.2, the owner's manual insert for private use lifts must also include:
S6.12.4.1The dimensions that constitute the unobstructed platform operating volume;
S6.12.4.2The manufacturer's rated load for the lift;
S6.12.4.3Information on whether a wheelchair user must back onto the platform from the ground level loading position due to the absence of an inner roll stop;
S6.12.4.4The statement “DOT-Private Use Lift” on the front cover of the vehicle owner's manual insert; and
S6.12.4.5The statement “DOT-Private Use Lift verifies that this platform lift meets only the “private use lift” requirements of FMVSS No. 403. This lift may be installed on all vehicles appropriate for the size and weight of the lift, except for buses, school buses, and multi-purpose passenger vehicles other than motor homes with a gross vehicle weight rating (GVWR) that exceeds (4,536 kg) 10,000 lb.”
S6.13Installation instructions. The manufacturer of a platform lift must include installation instructions with each lift. Information must be included in the installation instructions that identifies:
S6.13.1The vehicles on which the lift is designed to be installed. Vehicles may be identified by listing the make, model, and year of the vehicles for which the lift is suitable, or by specifying the design elements that would make a vehicle an appropriate host for the particular lift, and for which the platform lift manufacturer has certified compliance.
S6.13.2Procedures for operational checks that the vehicle manufacturer must perform to verify that the lift is fully operational. Such checks include, but are not limited to, platform lighting, the threshold-warning signal, and interlocks, including those that interface with vehicle systems.
S6.13.3Any informational material or labels that must be placed on or in the vehicle in order to comply with the requirements of this standard. Labels must be of a permanent nature that can withstand the elements of the outside environment.
S6.13.4Public use lifts: In addition to meeting the requirements of S6.13.1 through S6.13.3, the installation instructions for public use lifts must also include, on the front cover of the instructions, the statement “DOT-Public Use Lift”.
S6.13.5Private use lifts: In addition to meeting the requirements of S6.13.1 through S6.13.3, the installation instructions for private use lifts must also include, on the front cover of the instructions, the manufacturer's rated load for the lift and the statement “DOT-Private Use Lift”.
S7.Test conditions and procedures. Each platform lift must be capable of meeting all of the tests specified in this standard, both separately, and in the sequence specified in this section. The tests specified in S7.4, S7.7.4 and S7.8 through S7.11 are performed on a single lift and vehicle combination. The tests specified in S7.2, S7.3, S7.5, S7.6, S7.7.1 and S7.12 through S7.14 may be performed with the lift installed on a test jig rather than on a vehicle. Tests of requirements in S6.1 through S6.11 may be performed on a single lift and vehicle combination, except for the requirements of S6.5.3. Attachment hardware may be replaced if damaged by removal and reinstallation of the lift between a test jig and vehicle.
S7.1Test devices.
S7.1.1Test pallet and load. The surface of the test pallet that rests on the platform used for the tests specified in S7.9 through S7.11 and S7.14 has sides that measure between 660 mm (26 in) and 686 mm (27 in). For the tests specified in S7.9 and S7.10, the test pallet is made of a rectangular steel plate of uniform thickness and the load that rests on the test pallet is made of rectangular steel plate(s) of uniform thickness and sides that measure between 533 mm (21 in) and 686 mm (27 in). The standard test load that rests on the pallet is defined in S4.
S7.1.2Wheelchair test device. The test device is an unloaded power wheelchair whose size is appropriate for a 95th percentile male and that has the dimensions, configuration and components described in S7.1.2.1 through S7.1.2.11. If the dimension in S7.1.2.9 is measured for a particular wheelchair by determining its tipping angle, the batteries are prevented from moving from their original position.
S7.1.2.1a cross-braced steel frame;
S7.1.2.2a sling seat integrated in the frame;
S7.1.2.3a belt drive;
S7.1.2.4detachable footrests, with the lowest point of the footrest adjustab