571.135—Standard No. 135; Light vehicle brake systems.

S1. Scope. This standard specifies requirements for service brake and associated parking brake systems.
S2. Purpose. The purpose of this standard is to ensure safe braking performance under normal and emergency driving conditions.
S3. Application. This standard applies to passenger cars manufactured on or after September 1, 2000 and to multi-purpose passenger vehicles, trucks and buses with a gross vehicle weight rating (GVWR) of 3,500 kilograms (7,716 pounds) or less, manufactured on or after September 1, 2002. In addition, at the option of the manufacturer, passenger cars manufactured before September 1, 2000, and multi-purpose passenger vehicles, trucks and buses with a GVWR of 3,500 kilograms (7,716 pounds) or less, manufactured before September 1, 2002, may meet the requirements of this standard instead of Federal Motor Vehicle No. 105, Hydraulic Brake Systems.
S4. Definitions.
Adhesion utilization curves means curves showing, for specified load conditions, the adhesion utilized by each axle of a vehicle plotted against the braking ratio of the vehicle.
Antilock brake system or ABS means a portion of a service brake system that automatically controls the degree of rotational wheel slip during braking by:
Backup system means a portion of a service brake system, such as a pump, that automatically supplies energy in the event of a primary brake power source failure.
Brake factor means the slope of the linear least squares regression equation best representing the measured torque output of a brake as a function of the measured applied line pressure during a given brake application for which no wheel lockup occurs.
Brake hold-off pressure means the maximum applied line pressure for which no brake torque is developed, as predicted by the pressure axis intercept of the linear least squares regression equation best representing the measured torque output of a brake as a function of the measured applied line pressure during a given brake application.
Brake power assist unit means a device installed in a hydraulic brake system that reduces the amount of muscular force that a driver must apply to actuate the system, and that, if inoperative, does not prevent the driver from braking the vehicle by a continued application of muscular force on the service brake control.
Brake power unit means a device installed in a brake system that provides the energy required to actuate the brakes, either directly or indirectly through an auxiliary device, with driver action consisting only of modulating the energy application level.
Braking ratio means the deceleration of the vehicle divided by the gravitational acceleration constant.
Electric vehicle or EV means a motor vehicle that is powered by an electric motor drawing current from rechargeable storage batteries, fuel cells, or other portable sources of electrical current, and which may include a non-electrical source of power designed to charge batteries and components thereof.
Electrically-actuated service brakes means service brakes that utilize electrical energy to actuate the foundation brakes.
Functional failure means a failure of a component (either electrical or mechanical in nature) which renders the system totally or partially inoperative yet the structural integrity of the system is maintained.
Hydraulic brake system means a system that uses hydraulic fluid as a medium for transmitting force from a service brake control to the service brake and that may incorporate a brake power assist unit, or a brake power unit.
Initial brake temperature or IBT means the average temperature of the service brakes on the hottest axle of the vehicle 0.32 km (0.2 miles) before any brake application.
Lightly loaded vehicle weight or LLVW means unloaded vehicle weight plus the weight of a mass of 180 kg (396 pounds), including driver and instrumentation.
Maximum speed of a vehicle or VMax means the highest speed attainable by accelerating at a maximum rate from a standing start for a distance of 3.2 km (2 miles) on a level surface, with the vehicle at its lightly loaded vehicle weight, and, if an EV, with the propulsion batteries at a state of charge of not less than 95 percent at the beginning of the run.
Objective brake factor means the arithmetic average of all the brake factors measured over the twenty brake applications defined in S7.4, for all wheel positions having a given brake configuration.
Peak friction coefficient or PFC means the ratio of the maximum value of braking test wheel longitudinal force to the simultaneous vertical force occurring prior to wheel lockup, as the braking torque is progressively increased.
Pressure component means a brake system component that contains the brake system fluid and controls or senses the fluid pressure.
Regenerative braking system or RBS means an electrical energy system that is installed in an EV for recovering or dissipating kinetic energy, and which uses the propulsion motor(s) as a retarder for partial braking of the EV while returning electrical energy to the propulsion battery(s) or dissipating electrical energy.
Snub means the braking deceleration of a vehicle from a higher reference speed to a lower reference speed that is greater than zero.
Split service brake system means a brake system consisting of two or more subsystems actuated by a single control, designed so that a single failure in any subsystem (such as a leakage-type failure of a pressure component of a hydraulic subsystem except structural failure of a housing that is common to two or more subsystems, or an electrical failure in an electric subsystem) does not impair the operation of any other subsystem.
Stopping distance means the distance traveled by a vehicle from the point of application of force to the brake control to the point at which the vehicle reaches a full stop.
Variable brake proportioning system means a system that has one or more proportioning devices which automatically change the brake pressure ratio between any two or more wheels to compensate for changes in wheel loading due to static load changes and/or dynamic weight transfer, or due to deceleration.
Wheel lockup means 100 percent wheel slip.
S5. Equipment requirements.
S5.1. Service brake system. Each vehicle shall be equipped with a service brake system acting on all wheels.
S5.1.1. Wear adjustment. Wear of the service brakes shall be compensated for by means of a system of automatic adjustment.
S5.1.2. Wear status. The wear condition of all service brakes shall be indicated by either:
S5.1.3 Regenerative braking system. (a) For an EV equipped with RBS, the RBS is considered to be part of the service brake system if it is automatically activated by an application of the service brake control, if there is no means provided for the driver to disconnect or otherwise deactivate it, and if it is activated in all transmission positions, including neutral.
S5.2. Parking brake system. Each vehicle shall be equipped with a parking brake system of a friction type with solely mechanical means to retain engagement.
S5.3. Controls.
S5.3.1. The service brakes shall be activated by means of a foot control. The control of the parking brake shall be independent of the service brake control, and may be either a hand or foot control.
S5.3.2. For vehicles equipped with ABS, a control to manually disable the ABS, either fully or partially, is prohibited.
S5.4. Reservoirs.
S5.4.1. Master cylinder reservoirs. A master cylinder shall have a reservoir compartment for each service brake subsystem serviced by the master cylinder. Loss of fluid from one compartment shall not result in a complete loss of brake fluid from another compartment.
S5.4.2. Reservoir capacity. Reservoirs, whether for master cylinders or other type systems, shall have a total minimum capacity equivalent to the fluid displacement resulting when all the wheel cylinders or caliper pistons serviced by the reservoirs move from a new lining, fully retracted position (as adjusted initially to the manufacturer's recommended setting) to a fully worn, fully applied position, as determined in accordance with S7.17(c) of this standard. Reservoirs shall have completely separate compartments for each subsystem except that in reservoir systems utilizing a portion of the reservoir for a common supply to two or more subsystems, individual partial compartments shall each have a minimum volume of fluid equal to at least the volume displaced by the master cylinder piston servicing the subsystem, during a full stroke of the piston. Each brake power unit reservoir servicing only the brake system shall have a minimum capacity equivalent to the fluid displacement required to charge the system piston(s) or accumulator(s) to normal operating pressure plus the displacement resulting when all the wheel cylinders or caliper pistons serviced by the reservoir or accumulator(s) move from a new lining, fully retracted position (as adjusted initially to the manufacturer's recommended setting) to a fully worn, fully applied position.
S5.4.4. Fluid level indication. Brake fluid reservoirs shall be so constructed that the level of fluid can be checked without need for the reservoir to be opened. This requirement is deemed to have been met if the vehicle is equipped with a transparent brake fluid reservoir or a brake fluid level indicator meeting the requirements of S5.5.1(a)(1).
S5.5. Brake system warning indicator. Each vehicle shall have one or more visual brake system warning indicators, mounted in front of and in clear view of the driver, which meet the requirements of S5.5.1 through S5.5.5. In addition, a vehicle manufactured without a split service brake system shall be equipped with an audible warning signal that activates under the conditions specified in S5.5.1(a).
S5.5.1. Activation. An indicator shall be activated when the ignition (start) switch is in the “on” (“run”) position and whenever any of conditions (a) through (g) occur:
S5.5.2. Function check. (a) All indicators shall be activated as a check function by either:
S5.5.3. Duration. Each indicator activated due to a condition specified in S5.5.1 shall remain activated as long as the condition exists, whenever the ignition (“start”) switch is in the “on” (“run”) position, whether or not the engine is running.
S5.5.4. Function. When a visual warning indicator is activated, it may be continuous or flashing, except that the visual warning indicator on a vehicle not equipped with a split service brake system shall be flashing. The audible warning required for a vehicle manufactured without a split service brake system may be continuous or intermittent.
S5.5.5. Labeling. (a) Each visual indicator shall display a word or words in accordance with the requirements of Standard No. 101 ( 49 CFR 571.101) and this section, which shall be legible to the driver under all daytime and nighttime conditions when activated. Unless otherwise specified, the words shall have letters not less than 3.2 mm ( 1/8 inch) high and the letters and background shall be of contrasting colors, one of which is red. Words or symbols in addition to those required by Standard No. 101 and this section may be provided for purposes of clarity.
S5.6. Brake system integrity. Each vehicle shall meet the complete performance requirements of this standard without:
S6. General test conditions. Each vehicle must meet the performance requirements specified in S7 under the following test conditions and in accordance with the test procedures and test sequence specified. Where a range of conditions is specified, the vehicle must meet the requirements at all points within the range.
S6.1. Ambient conditions.
S6.1.1. Ambient temperature. The ambient temperature is any temperature between 0 °C (32 °F) and 40 °C (104 °F).
S6.1.2. Wind speed. The wind speed is not greater than 5 m/s (11.2 mph).
S6.2. Road test surface.
S6.2.1. Pavement friction. Unless otherwise specified, the road test surface produces a peak friction coefficient (PFC) of 0.9 when measured using an American Society for Testing and Materials (ASTM) E1136 standard reference test tire, in accordance with ASTM Method E 1337-90, at a speed of 64.4 km/h (40 mph), without water delivery.
S6.2.2. Gradient. Except for the parking brake gradient holding test, the test surface has no more than a 1% gradient in the direction of testing and no more than a 2% gradient perpendicular to the direction of testing.
S6.2.3. Lane width. Road tests are conducted on a test lane 3.5 m (11.5 ft) wide.
S6.3. Vehicle conditions.
S6.3.1. Vehicle weight.
S6.3.1.1. For the tests at GVWR, the vehicle is loaded to its GVWR such that the weight on each axle as measured at the tire-ground interface is in proportion to its GAWR, with the fuel tank filled to 100% of capacity. However, if the weight on any axle of a vehicle at LLVW exceeds the axle's proportional share of the GVWR, the load required to reach GVWR is placed so that the weight on that axle remains the same as at LLVW.
S6.3.1.2. For the test at LLVW, the vehicle is loaded to its LLVW such that the added weight is distributed in the front passenger seat area.
S6.3.2. Fuel tank loading. The fuel tank is filled to 100% of capacity at the beginning of testing and may not be less than 75% of capacity during any part of the testing.
S6.3.3. Lining preparation. At the beginning of preparation for the road tests, the brakes of the vehicle are in the same condition as when the vehicle was manufactured. No burnishing or other special preparation is allowed, unless all vehicles sold to the public are similarly prepared as a part of the manufacturing process.
S6.3.4. Adjustments and repairs. These requirements must be met without replacing any brake system parts or making any adjustments to the brake system except as specified in this standard. Where brake adjustments are specified (S7.1.3), adjust the brakes, including the parking brakes, in accordance with the manufacturer's recommendation. No brake adjustments are allowed during or between subsequent tests in the test sequence.
S6.3.5. Automatic brake adjusters. Automatic adjusters are operational throughout the entire test sequence. They may be adjusted either manually or by other means, as recommended by the manufacturer, only prior to the beginning of the road test sequence.
S6.3.6. Antilock brake system (ABS). If a car is equipped with an ABS, the ABS is fully operational for all tests, except where specified in the following sections.
S6.3.7. Variable brake proportioning valve. If a car is equipped with a variable brake proportioning system, the proportioning valve is fully operational for all tests except the test for failed variable brake proportioning system.
S6.3.8. Tire inflation pressure. Tires are inflated to the pressure recommended by the vehicle manufacturer for the GVWR of the vehicle.
S6.3.9. Engine. Engine idle speed and ignition timing are set according to the manufacturer's recommendations. If the vehicle is equipped with an adjustable engine speed governor, it is adjusted according to the manufacturer's recommendations.
S6.3.10. Vehicle openings. All vehicle openings (doors, windows, hood, trunk, convertible top, cargo doors, etc.) are closed except as required for instrumentation purposes.
S6.3.11 State of charge of batteries for EVs.
S6.3.11.1 The state of charge of the propulsion batteries is determined in accordance with SAE Recommended Practice J227a, Electric Vehicle Test Procedure, February 1976. The applicable sections of J227a are 3.2.1 through 3.2.4, 3.3.1 through 3.3.2.2, 3.4.1 and 3.4.2, 4.2.1, 5.2, 5.2.1 and 5.3.
S6.3.11.2 At the beginning of the burnish procedure (S7.1 of this standard) in the test sequence, each propulsion battery is at the maximum state of charge recommended by the manufacturer, as stated in the vehicle operator's manual or on a label that is permanently attached to the vehicle, of, if the manufacturer has made no recommendation, not less than 95 percent. During the 200-stop burnish procedure, the propulsion batteries are restored to the maximum state of charge determined as above, after each increment of 40 burnish stops until the burnish procedure is complete. The batteries may be charged at a more frequent interval during a particular 40-stop increment only if the EV is incapable of achieving the initial burnish test speed during that increment. During the burnish procedure, the propulsion batteries may be charged by external means or replaced by batteries that are at a state of charge of not less than 95 percent. For an EV having a manual control for setting the level of regenerative braking, the manual control, at the beginning of the burnish procedure, is set to provide maximum regenerative braking throughout the burnish.
S6.3.11.3 At the beginning of each performance test in the test sequence (S7.2 through S7.17 of this standard), unless otherwise specified, an EV's propulsion batteries are at the state of charge recommended by the manufacturer, as stated in the vehicle operator's manual or on a label that is permanently attached to the vehicle, or, if the manufacturer has made no recommendation, at a state of charge of not less than 95 percent. No further charging of any propulsion battery occurs during any of the performance tests in the test sequence of this standard. If the propulsion batteries are depleted during a test sequence such that the vehicle reaches automatic shut-down, will not accelerate, or the low state of charge brake warning lamp is illuminated, the vehicle is to be accelerated to brake test speed by auxiliary means. If a battery is replaced rather than recharged, the replacement battery shall be charged and measured for state of charge in accordance with these procedures.
S6.3.12 State of charge of batteries for electrically-actuated service brakes. A vehicle equipped with electrically-actuated service brakes also performs the following test series. Conduct 10 stopping tests from a speed of 100 kph or the maximum vehicle speed, whichever is less. At least two of the 10 stopping distances must be less than or equal to 70 meters. The vehicle is loaded to GVWR and the transmission is in the neutral position when the service brake control is actuated and throughout the remainder of the test. Each battery providing power to the electrically-actuated service brakes, shall be in a depleted state of charge for conditions (a), (b), or (c) of this paragraph as appropriate. An auxiliary means may be used to accelerate an EV to test speed.
S6.3.13 Electric vehicles.
S6.3.13.1 (a) For an EV equipped with an RBS that is part of the service brake system, the RBS is operational during the burnish and all tests, except for the test of a failed RBS.
S6.3.13.2 For tests conducted “in neutral”, the operator of an EV with no “neutral” position (or other means such as a clutch for disconnecting the drive train from the propulsion motor(s)) does not apply any electromotive force to the propulsion motor(s). Any electromotive force that is applied to the propulsion motor(s) automatically remains in effect unless otherwise specified by the test procedure.
S6.4. Instrumentation.
S6.4.1. Brake temperature measurement. The brake temperature is measured by plug-type thermocouples installed in the approximate center of the facing length and width of the most heavily loaded shoe or disc pad, one per brake, as shown in Figure 1. A second thermocouple may be installed at the beginning of the test sequence if the lining wear is expected to reach a point causing the first thermocouple to contact the metal rubbing surface of a drum or rotor. For center-grooved shoes or pads, thermocouples are installed within 3 mm (.12 in) to 6 mm (.24 in) of the groove and as close to the center as possible.
S6.4.2. Brake line pressure measurement for the torque wheel test. The vehicle shall be fitted with pressure transducers in each hydraulic circuit. On hydraulically proportioned circuits, the pressure transducer shall be downstream of the operative proportioning valve.
S6.4.3. Brake torque measurement for the torque wheel test. The vehicle shall be fitted with torque wheels at each wheel position, including slip ring assemblies and wheel speed indicators to permit wheel lock to be detected.

Code of Federal Regulations

Code of Federal Regulations 629
[Please see PDF for image: EC01AU91.070 ]
S6.5. Procedural conditions.
S6.5.1. Brake control. All service brake system performance requirements, including the partial system requirements of S7.7, S7.10 and S7.11, must be met solely by use of the service brake control.
S6.5.2. Test speeds. If a vehicle is incapable of attaining the specified normal test speed, it is tested at a speed that is a multiple of 5 km/h (3.1 mph) that is 4 to 8 km/h (2.5 to 5.0 mph) less than its maximum speed and its performance must be within a stopping distance given by the formula provided for the specific requirement.
S6.5.3. Stopping distance.
S6.5.3.1. The braking performance of a vehicle is determined by measuring the stopping distance from a given initial speed.
S6.5.3.2. Unless otherwise specified, the vehicle is stopped in the shortest distance achievable (best effort) on all stops. Where more than one stop is required for a given set of test conditions, a vehicle is deemed to comply with the corresponding stopping distance requirements if at least one of the stops is made within the prescribed distance.
S6.5.3.3. In the stopping distance formulas given for each applicable test (such as S≤0.10V 0.0060V 2 ), S is the maximum stopping distance in meters, and V is the test speed in km/h.
S6.5.4. Vehicle position and attitude.
S6.5.4.1. The vehicle is aligned in the center of the lane at the start of each brake application. Steering corrections are permitted during each stop.
S6.5.4.2. Stops are made without any part of the vehicle leaving the lane and without rotation of the vehicle about its vertical axis of more than ±15° from the center line of the test lane at any time during any stop.
S6.5.5. Transmission selector control.
S6.5.5.1. For tests in neutral, a stop or snub is made in accordance with the following procedures:
S6.5.5.2. For tests in gear, a stop or snub is made in accordance with the following procedures:
S6.5.6. Initial brake temperature (IBT). If the lower limit of the specified IBT for the first stop in a test sequence (other than a parking brake grade holding test) has not been reached, the brakes are heated to the IBT by making one or more brake applications from a speed of 50 km/h (31.1 mph), at a deceleration rate not greater than 3 -m/s 2 (9.8 fps 2 ).
S7. Road test procedures and performance requirements. Each vehicle shall meet all the applicable requirements of this section, when tested according to the conditions and procedures set forth below and in S6, in the sequence specified in Table 1:
Table 1—Road Test Sequence
Testing order Section No.
Vehicle loaded to GVWR:
1 Burnish S7.1
2 Wheel lock sequence S7.2
Vehicle loaded to LLVW:
3 Wheel lock sequence S7.2
4 ABS performance S7.3
5 Torque wheel S7.4
Vehicle loaded to GVWR:
6 Torque wheel S7.4
7 Cold effectiveness S7.5
8 High speed effectiveness S7.6
9 Stops with engine off S7.7
Vehicle loaded to LLVW:
10 Cold effectiveness S7.5
11 High speed effectiveness S7.6
12 Failed antilock S7.8
13 Failed proportioning valve S7.9
14 Hydraulic circuit failure S7.10
Vehicle loaded to GVWR:
15 Hydraulic circuit failure S7.10
16 Failed antilock S7.8
17 Failed proportioning valve S7.9
18 Power brake unit failure S7.11
19 Parking brake S7.12
20 Heating Snubs S7.13
21 Hot Performance S7.14
22 Brake cooling S7.15
23 Recovery Performance S7.16
24 Final Inspection S7.17
S7.1. Burnish.
S7.1.1. General information. Any pretest instrumentation checks are conducted as part of the burnish procedure, including any necessary rechecks after instrumentation repair, replacement or adjustment. Instrumentation check test conditions must be in accordance with the burnish test procedure specified in S7.1.2 and S7.1.3.
S7.1.2. Vehicle conditions. (a) Vehicle load: GVWR only.
S7.1.3. Test conditions and procedures. The road test surface conditions specified in S6.2 do not apply to the burnish procedure.
S7.2Wheel lockup sequence.
S7.2.1General information. (a) The purpose of this test is to ensure that lockup of both front wheels occurs either simultaneously with, or at a lower deceleration rate than, the lockup of both rear wheels, when tested on road surfaces affording adhesion such that wheel lockup of the first axle occurs at a braking ratio of between 0.15 and 0.80, inclusive.
S7.2.2Vehicle conditions. (a) Vehicle load: GVWR and LLVW.
S7.2.3. Test Conditions and Procedures. (a) IBT: ≤65 °C (149 °F), ≤100 °C (212 °F).