1910.137—Electrical protective equipment.
(a) Design requirements.
Insulating blankets, matting, covers, line hose, gloves, and sleeves made of rubber shall meet the following requirements:
(1) Manufacture and marking.
(i)
Blankets, gloves, and sleeves shall be produced by a seamless process.
(H)
Other relevant markings, such as the manufacturer's identification and the size of the equipment, may also be provided.
(iii)
Markings shall be nonconducting and shall be applied in such a manner as not to impair the insulating qualities of the equipment.
(2) Electrical requirements.
(i)
Equipment shall be capable of withstanding the a-c proof-test voltage specified in Table I-2 or the d-c proof-test voltage specified in Table I-3.
(B)
The test voltage shall be applied continuously for 3 minutes for equipment other than matting and shall be applied continuously for 1 minute for matting.
(C)
Gloves shall also be capable of withstanding the a-c proof-test voltage specified in Table I-2 after a 16-hour water soak. (See the note following paragraph (a)(3)(ii)(B) of this section.)
(ii)
When the a-c proof test is used on gloves, the 60-hertz proof-test current may not exceed the values specified in Table I-2 at any time during the test period.
(A)
If the a-c proof test is made at a frequency other than 60 hertz, the permissible proof-test current shall be computed from the direct ratio of the frequencies.
(B)
For the test, gloves (right side out) shall be filled with tap water and immersed in water to a depth that is in accordance with Table I-4. Water shall be added to or removed from the glove, as necessary, so that the water level is the same inside and outside the glove.
(C)
After the 16-hour water soak specified in paragraph (a)(2)(i)(C) of this section, the 60-hertz proof-test current may exceed the values given in Table I-2 by not more than 2 milliamperes.
(iii)
Equipment that has been subjected to a minimum breakdown voltage test may not be used for electrical protection. (See the note following paragraph (a)(3)(ii)(B) of this section.)
(iv)
Material used for Type II insulating equipment shall be capable of withstanding an ozone test, with no visible effects. The ozone test shall reliably indicate that the material will resist ozone exposure in actual use. Any visible signs of ozone deterioration of the material, such as checking, cracking, breaks, or pitting, is evidence of failure to meet the requirements for ozone-resistant material. (See the note following paragraph (a)(3)(ii)(B) of this section.)
(3) Workmanship and finish.
(i)
Equipment shall be free of harmful physical irregularities that can be detected by the tests or inspections required under this section.
(ii)
Surface irregularities that may be present on all rubber goods because of imperfections on forms or molds or because of inherent difficulties in the manufacturing process and that may appear as indentations, protuberances, or imbedded foreign material are acceptable under the following conditions:
(B)
Foreign material remains in place when the insulating material is folded and stretches with the insulating material surrounding it.
Code of Federal Regulations
(b) In-service care and use.
(1)
Electrical protective equipment shall be maintained in a safe, reliable condition.
(2)
The following specific requirements apply to insulating blankets, covers, line hose, gloves, and sleeves made of rubber:
(ii)
Insulating equipment shall be inspected for damage before each day's use and immediately following any incident that can reasonably be suspected of having caused damage. Insulating gloves shall be given an air test, along with the inspection.
(B)
Ozone cutting or ozone checking (the cutting action produced by ozone on rubber under mechanical stress into a series of interlacing cracks);
(D)
Any of the following texture changes: swelling, softening, hardening, or becoming sticky or inelastic.
(iv)
Insulating equipment found to have other defects that might affect its insulating properties shall be removed from service and returned for testing under paragraphs (b)(2)(viii) and (b)(2)(ix) of this section.
(vi)
Insulating equipment shall be stored in such a location and in such a manner as to protect it from light, temperature extremes, excessive humidity, ozone, and other injurious substances and conditions.
(A)
Protector gloves need not be used with Class 0 gloves, under limited-use conditions, where small equipment and parts manipulation necessitate unusually high finger dexterity.
Code of Federal Regulations
(B)
Any other class of glove may be used for similar work without protector gloves if the employer can demonstrate that the possibility of physical damage to the gloves is small and if the class of glove is one class higher than that required for the voltage involved. Insulating gloves that have been used without protector gloves may not be used at a higher voltage until they have been tested under the provisions of paragraphs (b)(2)(viii) and (b)(2)(ix) of this section.
(viii)
Electrical protective equipment shall be subjected to periodic electrical tests. Test voltages and the maximum intervals between tests shall be in accordance with Table I-5 and Table I-6.
(ix)
The test method used under paragraphs (b)(2)(viii) and (b)(2)(ix) of this section shall reliably indicate whether the insulating equipment can withstand the voltages involved.
Code of Federal Regulations
Code of Federal Regulations
452
(x)
Insulating equipment failing to pass inspections or electrical tests may not be used by employees, except as follows:
(B)
Rubber insulating blankets may be repaired using a compatible patch that results in physical and electrical properties equal to those of the blanket.
(C)
Rubber insulating blankets may be salvaged by severing the defective area from the undamaged portion of the blanket. The resulting undamaged area may not be smaller than 22 inches by 22 inches (560 mm by 560 mm) for Class 1, 2, 3, and 4 blankets.
(D)
Rubber insulating gloves and sleeves with minor physical defects, such as small cuts, tears, or punctures, may be repaired by the application of a compatible patch. Also, rubber insulating gloves and sleeves with minor surface blemishes may be repaired with a compatible liquid compound. The patched area shall have electrical and physical properties equal to those of the surrounding material. Repairs to gloves are permitted only in the area between the wrist and the reinforced edge of the opening.
(xii)
The employer shall certify that equipment has been tested in accordance with the requirements of paragraphs (b)(2)(viii), (b)(2)(ix), and (b)(2)(xi) of this section. The certification shall identify the equipment that passed the test and the date it was tested.
Code of Federal Regulations
Class of equipment | Proof-test voltage rms V | Maximum proof-test current, mA (gloves only) | |||
---|---|---|---|---|---|
267-mm (10.5-in) glove | 356-mm (14-in) glove | 406-mm (16-in) glove | 457-mm (18-in) glove | ||
0 | 5,000 | 8 | 12 | 14 | 16 |
1 | 10,000 | 14 | 16 | 18 | |
2 | 20,000 | 16 | 18 | 20 | |
3 | 30,000 | 18 | 20 | 22 | |
4 | 40,000 | 22 | 24 |
Class of equipment | Proof-test voltage |
---|---|
0 | 20,000 |
1 | 40,000 |
2 | 50,000 |
3 | 60,000 |
4 | 70,000 |
Code of Federal Regulations
Class of glove | AC proof test | DC proof test | ||
---|---|---|---|---|
mm. | in. | mm. | in. | |
0 | 38 | 1.5 | 38 | 1.5 |
1 | 38 | 1.5 | 51 | 2.0 |
2 | 64 | 2.5 | 76 | 3.0 |
3 | 89 | 3.5 | 102 | 4.0 |
4 | 127 | 5.0 | 153 | 6.0 |
1 The water level is given as the clearance from the cuff of the glove to the water line, with a tolerance of ±13 mm. (±0.5 in.). | ||||
2 If atmospheric conditions make the specified clearances impractical, the clearances may be increased by a maximum of 25 mm. (1 in.). |
Class of equipment | Maximum use voltage 1 a-c—rms | Retest voltage 2 a-c—rms | Retest voltage 2 d-c—avg |
---|---|---|---|
0 | 1,000 | 5,000 | 20,000 |
1 | 7,500 | 10,000 | 40,000 |
2 | 17,000 | 20,000 | 50,000 |
3 | 26,500 | 30,000 | 60,000 |
4 | 36,000 | 40,000 | 70,000 |
1 The maximum use voltage is the a-c voltage (rms) classification of the protective equipment that designates the maximum nominal design voltage of the energized system that may be safely worked. The nominal design voltage is equal to the phase-to-phase voltage on multiphase circuits. However, the phase-to-ground potential is considered to be the nominal design voltage: | |||
(1) If there is no multiphase exposure in a system area and if the voltage exposure is limited to the phase-to-ground potential, or | |||
(2) If the electrical equipment and devices are insulated or isolated or both so that the multiphase exposure on a grounded wye circuit is removed. | |||
2 The proof-test voltage shall be applied continuously for at least 1 minute, but no more than 3 minutes. |
Type of equipment | When to test |
---|---|
Rubber insulating line hose | Upon indication that insulating value is suspect. |
Rubber insulating covers | Upon indication that insulating value is suspect. |
Rubber insulating blankets | Before first issue and every 12 months thereafter. 1 |
Rubber insulating gloves | Before first issue and every 6 months thereafter. 1 |
Rubber insulating sleeves | Before first issue and every 12 months thereafter. 1 |
1 If the insulating equipment has been electrically tested but not issued for service, it may not be placed into service unless it has been electrically tested within the previous 12 months. |