314.126—Adequate and well-controlled studies.
(a)
The purpose of conducting clinical investigations of a drug is to distinguish the effect of a drug from other influences, such as spontaneous change in the course of the disease, placebo effect, or biased observation. The characteristics described in paragraph (b) of this section have been developed over a period of years and are recognized by the scientific community as the essentials of an adequate and well-controlled clinical investigation. The Food and Drug Administration considers these characteristics in determining whether an investigation is adequate and well-controlled for purposes of section 505 of the act. Reports of adequate and well-controlled investigations provide the primary basis for determining whether there is “substantial evidence” to support the claims of effectiveness for new drugs. Therefore, the study report should provide sufficient details of study design, conduct, and analysis to allow critical evaluation and a determination of whether the characteristics of an adequate and well-controlled study are present.
(1)
There is a clear statement of the objectives of the investigation and a summary of the proposed or actual methods of analysis in the protocol for the study and in the report of its results. In addition, the protocol should contain a description of the proposed methods of analysis, and the study report should contain a description of the methods of analysis ultimately used. If the protocol does not contain a description of the proposed methods of analysis, the study report should describe how the methods used were selected.
(2)
The study uses a design that permits a valid comparison with a control to provide a quantitative assessment of drug effect. The protocol for the study and report of results should describe the study design precisely; for example, duration of treatment periods, whether treatments are parallel, sequential, or crossover, and whether the sample size is predetermined or based upon some interim analysis. Generally, the following types of control are recognized:
(i) Placebo concurrent control.
The test drug is compared with an inactive preparation designed to resemble the test drug as far as possible. A placebo-controlled study may include additional treatment groups, such as an active treatment control or a dose-comparison control, and usually includes randomization and blinding of patients or investigators, or both.
(ii) Dose-comparison concurrent control.
At least two doses of the drug are compared. A dose-comparison study may include additional treatment groups, such as placebo control or active control. Dose-comparison trials usually include randomization and blinding of patients or investigators, or both.
(iii) No treatment concurrent control.
Where objective measurements of effectiveness are available and placebo effect is negligible, the test drug is compared with no treatment. No treatment concurrent control trials usually include randomization.
(iv) Active treatment concurrent control.
The test drug is compared with known effective therapy; for example, where the condition treated is such that administration of placebo or no treatment would be contrary to the interest of the patient. An active treatment study may include additional treatment groups, however, such as a placebo control or a dose-comparison control. Active treatment trials usually include randomization and blinding of patients or investigators, or both. If the intent of the trial is to show similarity of the test and control drugs, the report of the study should assess the ability of the study to have detected a difference between treatments. Similarity of test drug and active control can mean either that both drugs were effective or that neither was effective. The analysis of the study should explain why the drugs should be considered effective in the study, for example, by reference to results in previous placebo-controlled studies of the active control drug.
(v) Historical control.
The results of treatment with the test drug are compared with experience historically derived from the adequately documented natural history of the disease or condition, or from the results of active treatment, in comparable patients or populations. Because historical control populations usually cannot be as well assessed with respect to pertinent variables as can concurrent control populations, historical control designs are usually reserved for special circumstances. Examples include studies of diseases with high and predictable mortality (for example, certain malignancies) and studies in which the effect of the drug is self-evident (general anesthetics, drug metabolism).
(3)
The method of selection of subjects provides adequate assurance that they have the disease or condition being studied, or evidence of susceptibility and exposure to the condition against which prophylaxis is directed.
(4)
The method of assigning patients to treatment and control groups minimizes bias and is intended to assure comparability of the groups with respect to pertinent variables such as age, sex, severity of disease, duration of disease, and use of drugs or therapy other than the test drug. The protocol for the study and the report of its results should describe how subjects were assigned to groups. Ordinarily, in a concurrently controlled study, assignment is by randomization, with or without stratification.
(5)
Adequate measures are taken to minimize bias on the part of the subjects, observers, and analysts of the data. The protocol and report of the study should describe the procedures used to accomplish this, such as blinding.
(6)
The methods of assessment of subjects' response are well-defined and reliable. The protocol for the study and the report of results should explain the variables measured, the methods of observation, and criteria used to assess response.
(7)
There is an analysis of the results of the study adequate to assess the effects of the drug. The report of the study should describe the results and the analytic methods used to evaluate them, including any appropriate statistical methods. The analysis should assess, among other things, the comparability of test and control groups with respect to pertinent variables, and the effects of any interim data analyses performed.
(c)
The Director of the Center for Drug Evaluation and Research may, on the Director's own initiative or on the petition of an interested person, waive in whole or in part any of the criteria in paragraph (b) of this section with respect to a specific clinical investigation, either prior to the investigation or in the evaluation of a completed study. A petition for a waiver is required to set forth clearly and concisely the specific criteria from which waiver is sought, why the criteria are not reasonably applicable to the particular clinical investigation, what alternative procedures, if any, are to be, or have been employed, and what results have been obtained. The petition is also required to state why the clinical investigations so conducted will yield, or have yielded, substantial evidence of effectiveness, notwithstanding nonconformance with the criteria for which waiver is requested.
(d)
For an investigation to be considered adequate for approval of a new drug, it is required that the test drug be standardized as to identity, strength, quality, purity, and dosage form to give significance to the results of the investigation.
(e)
Uncontrolled studies or partially controlled studies are not acceptable as the sole basis for the approval of claims of effectiveness. Such studies carefully conducted and documented, may provide corroborative support of well-controlled studies regarding efficacy and may yield valuable data regarding safety of the test drug. Such studies will be considered on their merits in the light of the principles listed here, with the exception of the requirement for the comparison of the treated subjects with controls. Isolated case reports, random experience, and reports lacking the details which permit scientific evaluation will not be considered.