175.300—Resinous and polymeric coatings.
Resinous and polymeric coatings may be safely used as the food-contact surface of articles intended for use in producing, manufacturing, packing, processing, preparing, treating, packaging, transporting, or holding food, in accordance with the following prescribed conditions:
(a)
The coating is applied as a continuous film or enamel over a metal substrate, or the coating is intended for repeated food-contact use and is applied to any suitable substrate as a continuous film or enamel that serves as a functional barrier between the food and the substrate. The coating is characterized by one or more of the following descriptions:
(2)
Substances the use of which is permitted by regulations in this part or which are permitted by prior sanction or approval and employed under the specific conditions, if any, of the prior sanction or approval.
(3)
Any substance employed in the production of resinous and polymeric coatings that is the subject of a regulation in subchapter B of this chapter and conforms with any specification in such regulation. Substances named in this paragraph (b)(3) and further identified as required:
Beechnut.
Candlenut.
Castor (including dehydrated).
Chinawood (tung).
Coconut.
Corn.
Cottonseed.
Fish (refined).
Hempseed.
Linseed.
Oiticica.
Perilla.
Poppyseed.
Pumpkinseed.
Safflower.
Sesame.
Soybean.
Sunflower.
Tall oil.
Walnut.
The oils may be raw, heat-bodied, or blown. They may be refined by filtration, degumming, acid or alkali washing, bleaching, distillation, partial dehydration, partial polymerization, or solvent extraction, or modified by combination with maleic anhydride.
(ii)
Reconstituted oils from triglycerides or fatty acids derived from the oils listed in paragraph (b)(3)(i) of this section to form esters with:
Butylene glycol.
Ethylene glycol.
Pentaerythritol.
Polyethylene glycol.
Polypropylene glycol.
Propylene glycol.
Sorbitol.
Trimethylol ethane.
Trimethylol propane.
Butadiene and methylstyrene copolymer.
Butadiene and styrene copolymer, blown or unblown.
Maleic anhydride adduct of butadiene styrene.
Polybutadiene.
Copal.
Damar.
Elemi.
Gilsonite.
Glycerol ester of damar, copal, elemi, and sandarac.
Sandarac.
Shellac.
Utah coal resin.
(v)
Rosins and rosin derivatives, with or without modification by polymerization, isomerization, incidental decarboxylation, and/or hydrogenation, as follows:
(a) Rosins, refined to color grade of K or paler:
Gum rosin.
Tall oil rosin.
Wood rosin.
(b) Rosin esters formed by reacting rosin (paragraph (b)(3)(v)(a) of this section) with:
4,4′-sec-Butylidenediphenol-epichlorohydrin (epoxy).
Diethylene glycol.
Ethylene glycol.
Glycerol.
4,4′-Isopropylidenediphenol-epichlorohydrin (epoxy).
Methyl alcohol.
Pentaerythritol.
(c) Rosin esters (paragraph (b)(3)-(v)(b) of this section) modified by reaction with:
Maleic anhydride.
o-, m-, and p-substituted phenol-form-alde-hydes listed in paragraph (b)(3)(vi) of this section.
Phenol-formaldehyde.
(d) Rosin salts:
Calcium resinate (limed rosin).
Zinc resinate.
(a) Phenolic resins formed by reaction of formaldehyde with:
Alkylated (methyl, ethyl, propyl, isopropyl, butyl) phenols.
p-tert-Amylphenol.
4,4′-sec-Butylidenediphenol.
p-tert-Butylphenol.
o-, m-, and p-Cresol.
p-Cyclohexylphenol.
4,4′-Isopropylidenediphenol.
p-Nonylphenol.
p-Octylphenol.
3-Pentadecyl phenol mixture obtained from cashew nut shell liquid.
Phenol.
Phenyl o-cresol.
p-Phenylphenol.
Xylenol.
(b) Adjunct for phenolic resins: Aluminum butylate.
(vii)
Polyester resins (including alkyd-type), as the basic polymers, formed as esters of acids listed in paragraph (b)(3)(vii) (a) and (b) of this section by reaction with alcohols in paragraph (b)(3)(vii) (c) and (d) of this section.
(a) Polybasic acids:
Adipic.
1,4-cyclohexanedicarboxylic (CAS Reg. No. 1076-97-7).
Dimerized fatty acids derived from oils listed in paragraph (b)(3)(i) of this section.
Fumaric.
Isophthalic.
Maleic.
2,6-Naphthalenedicarboxylic.
2,6-Naphthalenedicarboxylic, dimethyl ester.
Orthophthalic.
Sebacic.
Terephthalic.
Terpene-maleic acid adduct.
Trimellitic.
(b) Monobasic acids:
Benzoic acid.
4,4-Bis(4′-hydroxyphenyl)-pentanoic acid.
tert-Butyl benzoic acid.
Fatty acids derived from oils listed in paragraph (b)(3)(i) of this section.
Rosins listed in paragraph (b)(3)(v)(a) of this section, for use only as reactants in oil-based or fatty acid-based alkyd resins.
(c) Polyhydric alcohols:
Butylene glycol.
Diethylene glycol.
2,2-Dimethyl-1,3-propanediol for use only in forming polyester resins for coatings intended for use in contact with non-alcoholic foods.
Ethylene glycol.
Glycerol.
Mannitol.
α-Methyl glucoside.
Pentaerythritol.
Propylene glycol.
Sorbitol.
Triethylene glycol, for use as a component in polyester resins for coatings not exceeding a coating weight of 4 milligrams per square inch and that are intended for contact under conditions of use D, E, F or G described in table 2 of paragraph (d) of this section with alcoholic beverages containing less than 8 percent alcohol.
Trimethylol ethane.
Trimethylol propane.
(d) Monohydric alcohols:
Cetyl alcohol.
Decyl alcohol.
Lauryl alcohol.
Myristyl alcohol.
Octyl alcohol.
Stearyl alcohol.
(e) Catalysts:
Dibutyltin oxide (CAS Reg. No. 818-08-6), not to exceed 0.2 percent of the polyester resin.
Hydroxybutyltin oxide (CAS Reg. No. 2273-43-0), not to exceed 0.2 percent of the polyester resin.
Monobutyltin tris(2-ethylhexoate) (CAS Reg. No. 23850-94-4), not to exceed 0.2 percent of the polyester resin.
(a) Epoxy resins, as the basic polymer:
(Alkoxy C10-C16)-2,3-epoxypropane, in which the alkyl groups are even numbered and consist of a maximum of 1 percent C10 carbon atoms and a minimum of 48 percent C12 carbon atoms and a minimum of 18 percent C14 carbon atoms, for use only in coatings that are intended for contact with dry bulk foods at room temperature.
4,4′-sec-Butylidenediphenol-epichlorohydrin.
4,4′-sec-Butylidenediphenol-epichlorohydrin reacted with one or more of the drying oils or fatty acids listed in paragraph (b)(3)(i) of this section.
4,4′-sec-Butylidenediphenol-epichlorohydrin chemically treated with one or more of the following substances:
Allyl ether of mono-, di-, or trimethylolphenol.
4,4′-sec-Butylidenediphenol-formaldehyde.
4,4′-Isopropylidenediphenol-formaldehyde.
Melamine-formaldehyde.
Phenol-formaldehyde.
Urea-formaldehyde.
Epoxidized polybutadiene.
Glycidyl ethers formed by reacting phenolnovolak resins with epichlorohydrin.
4,4′-Isopropylidenediphenol-epichlorohydrin.
4,4′-Isopropylidenediphenol-epichlorohydrin reacted with one or more of the drying oils or fatty acids listed in paragraph (b)(3)(i) of this section.
4,4′-Isopropylidenediphenol-epichlorohydrin chemically treated with one or more of the following substances:
Allyl ether of mono-, di-, or trimethylol phenol.
4,4′-sec-Butylidenediphenol-formaldehyde.
4,4′-Isopropylidenediphenol-formaldehyde.
Melamine-formaldehyde.
2,2′-[(1-methylethylidene)bis[4,1-phenyleneoxy[1-(butoxymethyl)-2,1-ethanediyl]oxymethylene]]bisoxirane, CAS Reg. No. 71033-08-4, for use only in coatings intended for contact with bulk dry foods at temperatures below 100 °F.
Phenol-formaldehyde.
Urea-formaldehyde.
(b) Catalysts and cross-linking agents for epoxy resins:
3-(Aminomethyl)-3,5,5-trimethyl-cyclo-hexyl-amine reacted with phenol and formaldehyde in a ratio of 2.6:1.0:2.0, for use only in coatings intended for repeated use in contact with foods only of the types identified in paragraph (d) of this section, table 1, under Category I and Category VIII, at temperatures not exceeding 88 °C (190 °F).
N-Beta-(aminoethyl)-gamma-amino-propyl-tri-meth-oxysilane (CAS Reg. No. 1760-24-3), for use only in coatings at a level not to exceed 1.3 percent by weight of the resin when such coatings are intended for repeated use in contact with foods only of the types identified in paragraph (d) of this section, table 1, under Types I, II, and III, under conditions of use C, D, E, or F as described in table 2 of paragraph (d) of this section; or when such coatings are intended for repeated use in contact with foods of the types identified in paragraph (d) of this section, table 1, under Types V, VI, VII, and VIII, under conditions of use E or F as described in table 2 of paragraph (d) of this section. Use shall be limited to coatings for tanks of capacity greater than 530,000 gallons.
Benzyl alcohol (CAS Reg. No. 100-51-6), for use only in coatings at a level not to exceed 4 percent by weight of the resin when such coatings are intended for repeated use in contact with foods only of the types identified in paragraph (d) of this section, table 1, under Types I, II, and III, under conditions of use C, D, E, or F as described in table 2 of paragraph (d) of this section; or when such coatings are intended for repeated use in contact with foods of the types identified in paragraph (d) of this section, table 1, under Types V, VI, VII, and VIII, under conditions of use E or F as described in table 2 of paragraph (d) of this section. Use shall be limited to coatings for tanks of capacity greater than 530,000 gallons.
Catalysts and cross-linking agents for epoxy resins:
3-Aminomethyl-3,5,5-trimethylcyclohexylamine (CAS Reg. No. 2855-0913-092).
Cyanoguanidine.
Dibutyl phthalate, for use only in coatings for containers having a capacity of 1,000 gallons or more when such containers are intended for repeated use in contact with alcoholic beverages containing up to 8 percent of alcohol by volume.
3-Diethylaminopropylamine (CAS Reg. No. 104-78-9), for use in coatings at a level not to exceed 6 percent by weight of the resin when such coatings are intended for repeated use in contact with foods only of the types identified in paragraph (d) of this section, table 1, under Types I, II, and III, under conditions of use C, D, E, or F as described in table 2 of paragraph (d) of this section; or when such coatings are intended for repeated use in contact with foods of the types identified in paragraph (d) of this section, table 1, under Types V, VI, VII, and VIII, under conditions of use E or F as described in table 2 of paragraph (d) of this section. Use shall be limited to coatings for tanks of capacity greater than 530,000 gallons.
Diethylenetriamine.
Diphenylamine.
Ethylenediamine.
Isophthalyl dihydrazide for use only in coatings subject to the provisions of paragraph (c) (3) or (4) of this section.
4,4′-Methylenedianiline, for use only in coatings for containers having a capacity of 1,000 gallons or more when such containers are intended for repeated use in contact with alcoholic beverages containing up to 8 percent of alcohol by volume.
N-Oleyl-1,3-propanediamine with not more than 10 percent by weight of diethylaminoethanol.
3-Pentadecenyl phenol mixture (obtained from cashew nutshell liquid) reacted with formaldehyde and ethylenediamine in a ratio of 1:2:2 (CAS Reg. No. 68413-28-5).
Polyamine produced when 1 mole of the chlorohydrin diether of polyethylene glycol 400 is made to react under dehydrohalogenating conditions with 2 moles of N-octadecyltrimethylenediamine for use only in coatings that are subject to the provisions of paragraph (c) (3) or (4) of this section and that contact food at temperatures not to exceed room temperature.
Polyethylenepolyamine (CAS Reg. No. 68131-73-7), for use only in coatings intended for repeated use in contact with food, at temperatures not to exceed 180 °F (82 °C).
Salicylic acid, for use only in coatings for containers having a capacity of 1,000 gallons or more when such containers are intended for repeated use in contact with alcoholic beverages containing up to 8 percent of alcohol by volume.
Salicylic acid (CAS Reg. No. 69-72-7), for use only in coatings at a level not to exceed 0.35 percent by weight of the resin when such coatings are intended for repeated use in contact with foods only of the types identified in paragraph (d) of this section, table 1, under Types I, II, and III, under conditions of use C, D, E, or F as described in table 2 of paragraph (d) of this section; or when such coatings are intended for repeated use in contact with foods of the types identified in paragraph (d) of this section, table 1, under Types V, VI, VII, and VIII, under conditions of use E or F as described in table 2 of paragraph (d) of this section. Use shall be limited to coatings for tanks of capacity greater than 530,000 gallons.
Stannous 2-ethylhexanoate for use only as a catalyst at a level not to exceed 1 percent by weight of the resin used in coatings that are intended for contact with food under conditions of use D, E, F, and G described in table 2 of paragraph (d) of this section.
Styrene oxide, for use only in coatings for containers having a capacity of 1,000 gallons or more when such containers are intended for repeated use in contact with alcoholic beverages containing up to 8 percent of alcohol by volume.
Tetraethylenepentamine.
Tetraethylenepentamine reacted with equimolar quantities of fatty acids.
Tri(dimethylaminomethyl) phenol and its salts prepared from the fatty acid moieties of the salts listed in paragraph (b)(3)(xxii)(b) of this section, for use only in coatings subject to the provisions of paragraph (c) (3) or (4) of this section.
Triethylenetetramine.
Trimellitic anhydride (CAS Reg. No. 552-30-7) for use only as a cross-linking agent at a level not to exceed 15 percent by weight of the resin in contact with food under all conditions of use, except that resins intended for use with foods containing more than 8 percent alcohol must contact such food only under conditions of use D, E, F, and G described in table 2 of paragraph (d) of this section.
Trimellitic anhydride adducts of ethylene glycol and glycerol, prepared by the reaction of 1 mole of trimellitic anhydride with 0.4-0.6 mole of ethylene glycol and 0.04-0.12 mole of glycerol, for use only as a cross-linking agent at a level not to exceed 10 percent by weight of the cured coating, provided that the cured coating only contacts food containing not more than 8 percent alcohol.
Meta-Xylylenediamine (1,3-benzene-di-methan-amine, CAS Reg. No. 1477-55-0), for use only in coatings at a level not to exceed 3 percent by weight of the resin when such coatings are intended for repeated use in contact with foods only of the types identified in paragraph (d) of this section, table 1, under Types I, II, and III, under conditions of use C, D, E or F as described in table 2 of paragraph (d) of this section; or when such coatings are intended for repeated use in contact with foods of the types identified in paragraph (d) of this section, table 1, under Types V, VI, VII, and VIII, under conditions of use E or F as described in table 2 of paragraph (d) of this section. Use shall be limited to coatings for tanks of capacity greater than 530,000 gallons.
Para-Xylylenediamine (1,4 benzene-di-methan-amine, CAS Reg. No. 539-48-0), for use only in coatings at a level not to exceed 0.6 percent by weight of the resin when such coatings are intended for repeated use in contact with foods only of the types identified in paragraph (d) of this section, table 1, under Types I, II, III, under conditions of use C, D, E, or F as described in table 2 of paragraph (d) of this section; or when such coatings are intended for repeated use in contact with foods of the types identified in paragraph (d) of this section, table 1, under Types V, VI, VII, and VIII, under conditions of use E and F as described in table 2 of paragraph (d) of this section. Use shall be limited to coatings for tanks of capacity greater than 530,000 gallons.
(c) Adjuncts for epoxy resins:
Aluminum butylate.
Benzoic acid, for use as a component in epoxy resins for coatings not exceeding a coating weight of 4 milligrams per square inch and that are intended for contact under conditions of use D, E, F or G described in table 2 of paragraph (d) of this section with alcoholic beverages containing less than 8 percent alcohol.
Polyamides from dimerized vegetable oils and the amine catalysts listed in paragraph (b)(3)(viii)(b) of this section, as the basic polymer.
Silane coupled silica, prepared from the reaction of microcrystalline quartz with N-beta-(N-vinylbenzylamino) ethyl-gamma-aminopropyltrimethoxy silane, mono-hydro-gen chloride, for use only in coatings intended for repeated use in contact with foods only of the types identified in paragraph (d) of this section, table 1, under Category I and Category VIII, at temperatures not exceeding 88 °C (190 °F).
Succinic anhydride, for use as a component in epoxy resins for coatings not exceeding a coating weight of 4 milligrams per square inch, and that are intended for contact under conditions of use D, E, F or G described in table 2 of paragraph (d) of this section with alcoholic beverages containing less than 8 percent alcohol.
Dipentene.
Hydrogenated dipentene resin (CAS Reg. No. 106168-39-2). For use only with coatings in contact with acidic and aqueous foods.
Hydrogenated-beta-pinene-alpha-pinene-dipentene copolymer resin (CAS Reg. No. 106168-37-0). For use only with coatings in contact with acidic and aqueous foods.
α-Pinene.
β-Pinene.
(a) Urea-formaldehyde resins, as the basic polymer:
Urea-formaldehyde.
Urea-formaldehyde chemically modified with methyl, ethyl, propyl, isopropyl, butyl, or isobutyl alcohol.
Urea-formaldehyde chemically modified with one or more of the amine catalysts listed in paragraph (b)(3)(viii)(b) of this section.
(b) Curing (cross-linking) catalyst for urea-formaldehyde resins:
Dodecyl benzenesulfonic acid (C.A. Registry No. 27176-87-0).
(a) Triazine-formaldehyde resins, as the basic polymer:
Benzoguanamine-formaldehyde.
Melamine-formaldehyde.
Melamine-formaldehyde chemically modified with one or more of the following amine catalysts:
Amine catalysts listed in paragraph (b)(3)(viii)(b) of this section.
Dimethylamine-2-methyl-1-propanol.
Methylpropanolamine.
Triethanolamine.
Melamine-formaldehyde chemically modified with methyl, ethyl, propyl, isopropyl, butyl, or isobutyl alcohol.
(b) Curing (cross-linking) catalyst for triazine-formaldehyde resins:
Dodecyl benzenesulfonic acid (C.A. Registry No. 27176-87-0).
Butyl methacrylate.
Cyclopentadiene.
Methyl, ethyl, butyl, or octyl esters of acrylic acid.
Methyl methacrylate.
Styrene.
Vinyl toluene.
Polyvinyl acetate.
Polyvinyl alcohol.
Polyvinyl butyral.
Polyvinyl chloride.
Polyvinyl formal.
Polyvinylidene chloride.
Polyvinyl pyrrolidone.
Polyvinyl stearate.
Vinyl chloride-acetate-2,3-epoxypropyl methacrylate copolymers containing not more than 10 weight percent of total polymer units derived from 2,3-epoxypropyl methacrylate and not more than 0.1 weight percent of unreacted 2,3-epoxypropyl methacrylate monomer for use in coatings for containers.
Vinyl chloride-acetate, hydroxyl-modified copolymer.
Vinyl chloride-acetate, hydroxyl-modified copolymer, reacted with trimellitic anhydride.
Vinyl chloride copolymerized with acrylamide and ethylene in such a manner that the finished copolymers have a minimum weight average molecular weight of 30,000 and contain not more than 3.5 weight percent of total polymer units derived from acrylamide; the acrylamide portion may or may not be subsequently partially hydrolyzed.
Vinyl chloride copolymerized with one or more of the following substances:
Acrylonitrile.
Fumaric acid and/or its methyl, ethyl, propyl, butyl, amyl, hexyl, heptyl, or octyl esters.
Maleic acid and/or its methyl, ethyl, propyl, butyl, amyl, hexyl, heptyl, or octyl esters.
5-Norbornene-2,3-dicarboxylic acid, mono-n-butyl ester; for use such that the finished vinyl chloride copolymers contain not more than 4 weight percent of total polymer units derived from this comonomer.
Vinyl acetate.
Vinylidene chloride.
Vinyl chloride-vinylidene chloride-2,3-epoxypropyl methacrylate copolymers containing not more than 10 weight percent of total polymer units derived from 2,3-epoxypropyl methacrylate and not more than 0.05 weight percent of unreacted 2,3-epoxypropyl methacrylate monomer based on polymer solids for use only in coatings for containers intended for contact with foods under conditions B, C, D, E, F, G, or H described in table 2 of paragraph (d) of this section.
Carboxymethylcellulose.
Cellulose acetate.
Cellulose acetate-butyrate.
Cellulose acetate-propionate.
Ethylcellulose.
Ethyl hydroxyethylcellulose.
Hydroxyethylcellulose.
Hydroxypropyl methylcellulose.
Methylcellulose.
Nitrocellulose.
Polystyrene.
α-Methyl styrene polymer.
Styrene copolymerized with one or more of the following:
Acrylonitrile.
α-Methylstyrene.
Ethylene-ethyl acrylate copolymer.
Ethylene-isobutyl acrylate copolymers containing no more than 35 weight percent of total polymer units derived from isobutyl acrylate.
Ethylene-vinyl acetate copolymer.
Polyethylene.
Polypropylene.
Maleic anhydride adduct of polypropylene The polypropylene used in the manufacture of the adduct complies with § 177.1520(c), item 1.1; and the adduct has a maximum combined maleic anhydride content of 0.8 percent and a minimum intrinsic viscosity of 0.9, determined at 135 °C on a 0.1 percent solution of the modified polypropylene in decahydronaphthalene as determined by a method titled “Method for Determination of Intrinsic Viscosity of Maleic Anhydride Adduct of Polypropylene,” which is incorporated by reference. Copies are available from the Center for Food Safety and Applied Nutrition (HFS-200), Food and Drug Administration, 5100 Paint Branch Pkwy., College Park, MD 20740, or available for inspection at the National Archives and Records Administration (NARA). For information on the availability of this material at NARA, call 202-741-6030, or go to: http://www.archives.gov/federal_register/code_of_federal_regulations/ibr_locations.html.
Acrylamide with ethylacrylate and/or styrene and/or methacrylic acid, subsequently reacted with formaldehyde and butanol.
Acrylic acid and the following esters thereof:
Ethyl.
Methyl.
Butyl acrylate-styrene-methacrylic acid-hydroxyethyl methacrylate copolymers containing no more than 20 weight percent of total polymer units derived from methacrylic acid and containing no more than 7 weight percent of total polymer units derived from hydroxyethyl methacrylate; for use only in coatings that are applied by electrodeposition to metal substrates.
Butyl acrylate-styrene-methacrylic acid-hydroxypropyl methacrylate copolymers containing no more than 20 weight percent of total polymer units derived from methacrylic acid and containing no more than 7 weight percent of total polymer units derived from hydroxypropyl methacrylate; for use only in coatings that are applied by electrodeposition to metal substrates and that are intended for contact, under condition of use D, E, F, or G described in table 2 of paragraph (d) of this section, with food containing no more than 8 percent of alcohol.
Ethyl acrylate-styrene-methacrylic acid copolymers for use only as modifiers for epoxy resins listed in paragraph (b)(3)(viii)(a) of this section.
Ethyl acrylate-methyl methacrylate-styrene-methacrylic acid copolymers for use only as modifiers for epoxy resins listed in paragraph (b)(3)(viii)(a) of this section.
2-Ethylhexyl acrylate-ethyl acrylate copolymers prepared by copolymerization of 2-ethylhexyl acrylate and ethyl acrylate in a 7/3 weight ratio and having a number average molecular weight range of 5,800 to 6,500 and a refractive index, nD25° (40 percent in 2,2,4-trimethyl pentane) of 1.4130-1.4190; for use as a modifier for nylon resins complying with § 177.1500 of this chapter and for phenolic and epoxy resins listed in paragraph (b)(3) (vi) and (viii) of this section, respectively, at a level not to exceed 1.5 percent of the coating.
2-Ethylhexyl acrylate-methyl methacrylate-acrylic acid copolymers for use only as modifiers for epoxy resins listed in paragraph (b)(3)(viii) of this section.
Methacrylic acid and the following esters thereof:
Butyl.
Ethyl.
Methyl.
Methacrylic acid or its ethyl and methyl esters copolymerized with one or more of the following:
Acrylic acid.
Ethyl acrylate.
Methyl acrylate.
n-Butyl acrylate-styrene-methacrylic acid-hydroxyethyl methacrylate copolymers containing no more than 2 weight percent of total polymer units derived from methacrylic acid and containing no more than 9.5 weight percent of total polymer units derived from hydroxyethyl methacrylate; for use only in coatings in contact with dry food (food type VIII in table 1 of paragraph (d) of this section). 2-(Dimethylamino) ethanol (C.A.S. Registry No. 108-01-0) may be employed as an optional adjuvant substance limited to no more than 2 weight percent based on polymer solids in the coating emulsion.
Styrene polymers made by the polymerization of any combination of styrene or alpha methyl styrene with acrylic acid, methacrylic acid, 2-ethyl hexyl acrylate, methyl methacrylate, and butyl acrylate. The styrene and alpha methyl styrene, individually, may constitute from 0 to 80 weight percent of the polymer. The other monomers, individually, may be from 0 to 40 weight percent of the polymer. The polymer number average molecular weight (Mn) shall be at least 2,000 (as determined by gel permeation chromatography). The acid number of the polymer shall be less than 250. The monomer content shall be less than 0.5 percent. The polymers are for use only in contact with food of Types IV-A, V, VII in table 1 of paragraph (d) of this section, under use conditions E through G in table 2 of paragraph (d), and with food of Type VIII without use temperature restriction.
Butadiene-acrylonitrile copolymer.
Butadiene-acrylonitrile-styrene copolymer.
Butadiene-styrene copolymer.
Butyl rubber.
Chlorinated rubber.
2-Chloro-1,3-butadiene (neoprene).
Natural rubber (natural latex or natural latex solids, smoked or unsmoked).
Polyisobutylene.
Rubber hydrochloride.
Styrene-isobutylene copolymer.
(xxii)
Driers made by reaction of a metal from paragraph (b)(3)(xxii)(a) of this section with acid, to form the salt listed in paragraph (b)(3)(xxii)(b) of this section:
(a) Metals:
Aluminum.
Calcium.
Cerium.
Cobalt.
Iron.
Lithium.
Magnesium.
Manganese.
Zinc.
Zirconium.
(b) Salts:
Caprate.
Caprylate.
Isodecanoate.
Linoleate.
Naphthenate.
Neodecanoate.
Octoate (2-ethylhexoate).
Oleate.
Palmitate.
Resinate.
Ricinoleate.
Soyate.
Stearate.
Tallate.
Paraffin, Type I.
Paraffin, Type II.
Polyethylene.
Sperm oil.
Spermaceti.
Acetyl tributyl citrate.
Acetyl triethyl citrate.
Butyl phthalyl butyl glycolate.
Butyl stearate.
p-tert-Butyl phenyl salicylate.
Dibutyl sebacate.
Diethyl phthalate.
Diisobutyl adipate.
Diisooctyl phthalate.
Epoxidized soybean oil (iodine number maximum 14; oxirane oxygen content 6% minimum), as the basic polymer.
Ethyl phthalyl ethyl glycolate.
2-Ethylhexyl diphenyl phosphate.
di-2-Ethylhexyl phthalate.
Glycerol.
Glyceryl monooleate.
Glyceryl triacetate.
Monoisopropyl citrate.
Propylene glycol.
Sorbitol.
Mono-, di-, and tristearyl citrate.
Triethyl citrate.
Triethylene glycol.
3-(2-Xenolyl)-1,2-epoxypropane.
N,N′-Dioleoylethylenediamine (CAS Reg. No. 110-31-6) for use only in ionomeric resins complying with § 177.1330 of this chapter and in ethylene vinyl acetate copolymers complying with § 177.1350 of this chapter at a level not to exceed 0.0085 milligram per square centimeter (0.055 milligram per square inch) in the finished food-contact article.
N,N′-Distearoyl ethylenediamine.
Linoleic acid amide.
Oleic acid amide.
Palmitic acid amide.
Petrolatum.
Polyethylene wax.
Polyoxyethylene glycol monooleate (mol. wt. of the polyoxyethylene glycol moiety greater than 300).
Polytetrafluoroethylene.
Silicones (not less than 300 centistokes viscosity): Dimethylpolysiloxanes and/or methylphenylpolysiloxanes. The methyl-phenylpolysiloxanes contain not more than 2.0 percent by weight of cyclosiloxanes having up to and including 4 siloxy units.
Silicones (not less than 100 centistokes viscosity): Dimethylpolysiloxanes and/or methylphenylpolysiloxanes limited to use only on metal substrates. The methylphenylpolysiloxanes contain not more than 2.0 percent by weight of cyclosiloxanes having up to and including 4 siloxy units.
Cottonseed oil and other edible oils.
Dibutyl sebacate.
Dioctyl sebacate.
Glyceryl monostearate.
Lanolin.
Mineral oil, white.
Palm oil.
Paraffin, Type I.
Paraffin, Type II.
Petrolatum.
Stearic acid.
(a) Silicones as the basic polymer:
Siloxane resins originating from methyl hydrogen polysiloxane, dimethyl polysiloxane, and methylphenyl polysiloxane.
Siloxane resins originating from the platinum-catalyzed reaction product of vinyl-containing dimethylpolysiloxane (CAS Reg. No. 68083-18-1 and CAS Reg. No. 68083-19-2) with methylhydrogen polysiloxane (CAS Reg. No. 63148-57-2) and dimethylmethylhydrogen polysiloxane (CAS Reg. No. 68037-59-2), where the platinum content does not exceed 150 parts per million. The following substances may be used as optional polymerization inhibitors:
3,5-Dimethyl-1-hexyne-3-ol (CAS Reg. No. 107-54-0), at a level not to exceed 0.53 weight-percent;
1-Ethynylcyclohexene (CAS Reg. No. 931-49-7), at a level not to exceed 0.64 weight-percent;
Bis(methoxymethyl)ethyl maleate (CAS Reg. No. 102054-10-4), at a level not to exceed 1.0 weight-percent;
Methylvinyl cyclosiloxane (CAS Reg. No. 68082-23-5); and
Tetramethyltetravinylcyclotetrasiloxane (CAS Reg. No. 2554-06-5).
(b) Curing (cross-linking) catalysts for silicones (the maximum amount of tin catalyst used shall be that required to effect optimum cure but shall not exceed 1 part of tin per 100 parts of siloxane resins solids):
Dibutyltin dilaurate.
Stannous oleate.
Tetrabutyl titanate.
Ethylene oxide adduct of 2,4,7,9-tetramethyl-5-decyn-4,7-diol (CAS Reg. No. 9014-85-1).
Poly[2-(diethylamino) ethyl methacrylate] phosphate (minimum intrinsic viscosity in water at 25 °C is not less than 9.0 deciliters per gram as determined by ASTM method D1243-79, “Standard Test Method for Dilute Solution Viscosity of Vinyl Chloride Polymers,” which is incorporated by reference (Copies may be obtained from the American Society for Testing Materials, 100 Barr Harbor Dr., West Conshohocken, Philadelphia, PA 19428-2959, or may be examined at the National Archives and Records Administration (NARA). For information on the availability of this material at NARA, call 202-741-6030, or go to: http://www.archives.gov/federal_register/code_of_federal_regulations/ibr_locations.html.), for use only as a suspending agent in the manufacture of vinyl chloride copolymers and limited to use at levels not to exceed 0.1 percent by weight of the copolymers.
Sodium dioctyl sulfosuccinate.
Sodium dodecylbenzenesulfonate
Sodium lauryl sulfate.
2,4,7,9-Tetramethyl-5-decyn-4,7-diol (C.A.S. Reg. No. 126-86-3), for use only in can coatings which are subsequently dried and cured at temperatures of at least 193 °C (380 °F) for 4 minutes.
Butylated hydroxyanisole.
Butylated hydroxytoluene.
Gum guaiac.
Dilauryl thiodipropionate.
Nordihydroguaiaretic acid.
Propyl gallate.
Distearyl thiodipropionate.
Thiodipropionic acid.
2,4,5-Trihydroxybutyrophenone.
(xxxi)
Can end cements (sealing compounds used for sealing can ends only): In addition to the substances listed in paragraph (b) of this section and those listed in § 177.1210(b)(5) of this chapter, the following may be used:
Butadiene-styrene-divinylbenzene copolymer (CAS Reg. No. 26471-45-4) for use only at levels not to exceed 23.8 percent by weight of the cement solids in can end cements.
Butadiene-styrene-fumaric acid copolymer.
4,4′-Butylidenebis (6-tert-butyl-m-cresol).
Dibenzamido phenyl disulfide.
Di-β-naphthyl phenylenediamine.
Dipentamethylene thiuram tetrasulfide.
Isobutylene-isoprene-divinylbenzene copolymers for use only at levels not to exceed 15 percent by weight of the dry cement composition.
Naphthalene sulfonic acid-formaldehyde condensate, sodium salt, for use only at levels not to exceed 0.6 percent by weight of the cement solids in can end cements for containers having a capacity of not less than 5 gallons.
Sodium decylbenzene sulfonate.
Sodium nitrite for use only at levels not to exceed 0.3 percent by weight of the cement solids in can end cements for containers having a capacity of not less than 5 gallons.
Sodium pentachlorophenate for use as a preservative at 0.1 percent by weight in can-sealing compounds on containers having a capacity of 5 gallons or more.
Sodium phenylphenate.
Styrene-maleic anhydride resin, partial methyl and butyl (sec- or iso-) esters, for use only at levels not in excess of 3 percent of the cement solids in can end cement formulations.
Tetrasodium EDTA (tetrasodium ethylene-diaminetetraacetate).
Tri (mixed mono- and dinonylphenyl) phosphite.
Zinc dibutyldithiocarbamate.
(xxxii)
Side seam cements: In addition to the substances listed in paragraph (b)(3) (i) to (xxx), inclusive, of this section, the following may be used.
p-tert-Butyl perbenzoate as a catalyst for epoxy resin.
epsilon-Caprolactam-(ethylene-ethyl acrylate) graft polymer.
Dicumyl peroxide for use only as polymerization catalyst.
4-(Diiodomethylsulfonyl) toluene (CAS Reg. No. 20018-09-1) for use as a preservative at a level not to exceed 0.3 percent by weight in can-sealing cements.
Diisodecyl phthalate for use only as plasticizer in side seam cements for containers intended for use in contact with food only of the types identified in paragraph (d) of this section, table 1, under Categories I, II, and VI.
4,4′-Bis(alpha,alpha-dimethylbenzyl)diphenylamine, CAS Reg. No. 10081-67-1.
Ethyl toluene sulfonamide.
N,N′-Hexamethylenebis(3,5-di-tert-butyl-4-hydroxyhydrocinnamide), CAS Reg. No. 23128-74-7.
Polyamides consisting of the following:
Copolymer of omega-laurolactam and espilon-caprolactam, CAS Reg. No. 25191-04-2 (Nylon 12/6).
Homopolymer of omega-aminododecanoic acid, CAS Reg. No. 24937-16-4.
Homopolymer of omega-laurolactam, CAS Reg. No. 25038-74-8 (Nylon 12).
Polyamides derived from the following acids and amines:
Acids:
Adipic.
Azelaic.
Sebacic.
Vegetable oil acids (with or without dimerization).
Amines:
Diethylenetriamine.
Diphenylamine.
Ethylenediamine.
Hexamethylenediamine.
Tetraethylenepentamine.
Triethylenetetramine.
Polypropylene glycol CAS Reg. No. 25322-69-4.
Sodium pentachlorophenate for use as a preservative at 0.1 percent by weight in can-sealing compounds on containers having a capacity of 5 gallons or more.
Tetrakis [methylene(3,5-di-tert-butyl-4-hydroxyhydrocinnamate)]methane, CAS Reg. No. 6683-19-8.
Toluene sulfonamide formaldehyde resin (basic polymer).
Triethylene glycol methacrylate for use only as polymerization cross-linking agent in side seam cements for containers intended for use in contact with food only of the types identified in paragraph (d) of this section, table 1, under Categories I, II, and VI.
Urea.
Ammonium citrate.
Ammonium potassium phosphate.
Bentonite, modified by reaction with benzyl dimethyl alkyl ammonium chloride, where the alkyl groups are derived from hydrogenated tallow (CAS Reg. No. 71011-24-0). For use only as a rheological agent in coatings intended to contact food under repeated use conditions.
Bentonite, modified by reaction with sodium stearate and benzyl dimethyl alkyl ammonium chloride, where the alkyl groups are derived from hydrogenated tallow (CAS Reg. No. 121888-68-4). For use as a rheological agent only in coatings intended to contact dry food under repeated-use conditions.
Calcium acetate.
Calcium ethyl acetoacetate.
Calcium glycerophosphate.
Calcium, sodium, and potassium oleates.
Calcium, sodium, and potassium ricinoleates.
Calcium, sodium, and potassium stearates.
Castor oil, hydrogenated.
Castor oil, hydrogenated polymer with ethylenediamine, 12-hydroxyoctadecanoic acid and sebacic acid (CAS Reg. No. 68604-06-8). The condensation product formed by the reaction of hydrogenated castor oil with polyamide derived from ethylenediamine, sebacic acid and 12-hydroxystearic acid, for use only in coatings at a level not to exceed 3.2 percent by weight of the resin when such coatings are intended for repeated use in contact with foods only of the types identified in paragraph (d) of this section, table 1, under Types I, II, and III, under conditions of use C, D, E, or F as described in table 2 of paragraph (d) of this section; or when such coatings are intended for repeated use in contact with foods of the types identified in paragraph (d) of this section, table 1, under Types V, VI, VII, and VIII, under conditions of use E or F as described in table 2 of paragraph (d) of this section. Use shall be limited to coatings for tanks of capacity greater than 530,000 gallons.
Castor oil, sulfated, sodium salt (CAS Reg. No. 68187-76-8), for use only in coatings for containers intended for repeated use.
Cetyl alcohol.
5-Chloro-2-methyl-4-isothiazolin-3-one (CAS Reg. No. 26172-55-4) and 2-methyl-4-isothiazolin-3-one (CAS Reg. No. 2682-20-4) mixture, at a ratio of 3 parts to 1 part, respectively, manufactured from methyl-3-mercaptopropionate (CAS Reg. No. 2935-90-2) and optionally containing magnesium nitrate (CAS Reg. No. 10377-60-3) at a concentration equivalent to the isothiazolone active ingredients (weight/weight). For use only as an antimicrobial agent in emulsion-based silicone coatings at a level not to exceed 50 milligrams per kilogram (based on isothiazolone active ingredient) in the coating formulations.
Cyclohexanone-formaldehyde resin produced when 1 mole of cyclohexanone is made to react with 1.65 moles of formaldehyde such that the finished resin has an average molecular weight of 600-610 as determined by ASTM method D2503-82, “Standard Test Method for Molecular Weight (Relative Molecular Mass) of Hydrocarbons by Thermoelectric Measurement of Vapor Pressure,” which is incorporated by reference. Copies may be obtained from the American Society for Testing Materials, 100 Barr Harbor Dr., West Conshohocken, Philadelphia, PA 19428-2959, or may be examined at the National Archives and Records Administration (NARA). For information on the availability of this material at NARA, call 202-741-6030, or go to: http://www.archives.gov/federal_register/code_of_federal_regulations/ibr_locations.html. For use only in contact with nonalcoholic and nonfatty foods under conditions of use E, F, and G, described in table 2 of paragraph (d) this section.
Decyl alcohol.
1,2-Dibromo-2,4-dicyanobutane (CAS Reg No. 35691-65-7). For use as an antimicrobial agent at levels not to exceed 500 milligrams per kilogram in emulsion-based silicone coatings.
Disodium hydrogen phosphate.
Ethyl acetoacetate.
Hectorite, modified by reaction with a mixture of benzyl methyl dialkyl ammonium chloride and dimethyl dialkyl ammonium